Compressibility and the Equation of State of an Optical Quantum Gas in a
Box
- URL: http://arxiv.org/abs/2112.12787v1
- Date: Thu, 23 Dec 2021 18:59:50 GMT
- Title: Compressibility and the Equation of State of an Optical Quantum Gas in a
Box
- Authors: Erik Busley, Leon Espert Miranda, Andreas Redmann, Christian
Kurtscheid, Kirankumar Karkihalli Umesh, Frank Vewinger, Martin Weitz, Julian
Schmitt
- Abstract summary: We demonstrate a measurement of the compressibility of a two-dimensional quantum gas of light in a box potential.
We observe signatures of Bose-Einstein condensation at high phase-space densities in the finite-size system.
Strikingly, upon entering the quantum degenerate regime, the measured density response to an external force sharply increases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The compressibility of a medium, quantifying its response to mechanical
perturbations, is a fundamental property determined by the equation of state.
For gases of material particles, studies of the mechanical response are well
established, in fields from classical thermodynamics to cold atomic quantum
gases. Here we demonstrate a measurement of the compressibility of a
two-dimensional quantum gas of light in a box potential and obtain the equation
of state for the optical medium. The experiment is carried out in a
nanostructured dye-filled optical microcavity. We observe signatures of
Bose-Einstein condensation at high phase-space densities in the finite-size
system. Strikingly, upon entering the quantum degenerate regime, the measured
density response to an external force sharply increases, hinting at the
peculiar prediction of an infinite compressibility of the deeply degenerate
Bose gas.
Related papers
- Minisuperspace model of quantum geometrodynamics in the Madelung-Bohm formalism [0.0]
An analogy between non-relativistic quantum mechanics in the Madelung formulation and quantum geometrodynamics is drawn.
It is shown that the perfect nature of the fluid is broken by the quantum Bohm potential.
The explicit dependences of the cosmic scale factor on the conformal time, which take into account the quantum additive, are found for empty space with spatial curvature and for a spatially flat universe with dust and radiation.
arXiv Detail & Related papers (2024-10-28T15:01:00Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well
Potential [0.0]
We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle in a macroscopic quantum state.
This state is prepared by letting the particle evolve in a static double-well potential after a sudden switchoff of the harmonic trap.
We highlight the possibility of using two particles, one evolving in each potential well, to mitigate the impact of collective sources of noise and decoherence.
arXiv Detail & Related papers (2023-03-14T15:00:55Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Number-conserving solution for dynamical quantum backreaction in a
Bose-Einstein condensate [0.0]
We study the exact dynamical evolution of a Bose-Einstein condensate, experimentally realizable in the ultracold gas laboratory.
A force density exerted on the gas particles which is of quantum origin is uniquely identified as the deviation from the classical Eulerian force density.
arXiv Detail & Related papers (2022-06-22T18:38:44Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Thermodynamics of ideal gas at Planck scale with strong quantum gravity
measurement [0.0]
We study the dynamics of a free particle confined in an infinite square well potential in one dimension of this space.
We show that the energy spectrum of this system is weakly proportional to the ordinary one of quantum mechanics free of the theory of gravity.
arXiv Detail & Related papers (2021-02-26T23:57:23Z) - Two-mode Phonon Squeezing in Bose-Einstein Condensates for Gravitational
Wave Detection [0.0]
The aim of this thesis is to find whether the recently described effect of an oscillating external potential on a uniform BEC can be exploited to generate two-mode squeezed phonon states.
The considered mechanism could find applications not only in the gravitational wave detector that originally motivated this work, but more generally in the field of quantum metrology based on ultracold atoms.
arXiv Detail & Related papers (2021-01-12T13:01:10Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Shape of a sound wave in a weakly-perturbed Bose gas [23.87373187143897]
We study acoustic emission generated in a uniform Bose gas by a static impurity.
The impurity excites a sound-wave packet, which propagates through the gas.
We calculate the shape of this wave packet in the limit of long wave lengths.
arXiv Detail & Related papers (2020-04-17T06:19:29Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.