論文の概要: Integrating Physics-Based Modeling with Machine Learning for Lithium-Ion
Batteries
- arxiv url: http://arxiv.org/abs/2112.12979v1
- Date: Fri, 24 Dec 2021 07:39:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-28 17:27:46.778304
- Title: Integrating Physics-Based Modeling with Machine Learning for Lithium-Ion
Batteries
- Title(参考訳): リチウムイオン電池の物理モデルと機械学習の統合
- Authors: Hao Tu, Scott Moura, Yebin Wang, Huazhen Fang
- Abstract要約: 本稿では,リチウムイオン電池(LiB)の高精度モデリングを実現するために,物理モデルと機械学習を統合する2つの新しいフレームワークを提案する。
これらのフレームワークは、物理モデルの状態情報の機械学習モデルに通知することで、物理と機械学習の深い統合を可能にする。
この研究はさらに、老化を意識したハイブリッドモデリングの実施へと拡張され、予測を行うために健康状態に意識したハイブリッドモデルの設計につながった。
- 参考スコア(独自算出の注目度): 5.735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical modeling of lithium-ion batteries (LiBs) is a primary challenge
in advanced battery management. This paper proposes two new frameworks to
integrate a physics-based model with machine learning to achieve high-precision
modeling for LiBs. The frameworks are characterized by informing the machine
learning model of the state information of the physical model, enabling a deep
integration between physics and machine learning. Based on the frameworks, a
series of hybrid models are constructed, through combining an electrochemical
model and an equivalent circuit model, respectively, with a feedforward neural
network. The hybrid models are relatively parsimonious in structure and can
provide considerable predictive accuracy under a broad range of C-rates, as
shown by extensive simulations and experiments. The study further expands to
conduct aging-aware hybrid modeling, leading to the design of a hybrid model
conscious of the state-of-health to make prediction. Experiments show that the
model has high predictive accuracy throughout a LiB's cycle life.
- Abstract(参考訳): リチウムイオン電池(libs)の数学的モデリングは、高度な電池管理における主要な課題である。
本稿では,LiBの高精度モデリングを実現するために,物理モデルと機械学習を統合する2つの新しいフレームワークを提案する。
フレームワークの特徴は、物理モデルの状態情報の機械学習モデルに通知することで、物理モデルと機械学習の深い統合を可能にすることである。
これらの枠組みに基づき、電気化学モデルと等価回路モデルとをそれぞれフィードフォワードニューラルネットワークと組み合わせて、一連のハイブリッドモデルを構築する。
ハイブリッドモデルは構造的に比較的類似しており、広範なシミュレーションや実験で示されているように、幅広いCレートでかなりの予測精度を提供できる。
この研究は、老化と認識のハイブリッドモデリングをさらに拡大し、健康状態を意識して予測するハイブリッドモデルの設計へと繋がる。
実験により、モデルはLiBのサイクルライフサイクルを通して高い予測精度を持つことが示された。
関連論文リスト
- HyPer-EP: Meta-Learning Hybrid Personalized Models for Cardiac Electrophysiology [7.230055455268642]
本稿では,個人化された心臓デジタル双生児を記述するための新しいハイブリッド・モデリング・フレームワークを提案する。
そこで我々は,物理系と神経系の両方のコンポーネントを識別するための新しいメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-15T02:30:00Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
ハイブリッドなモデリングプロセスは、より快適で、システム知識を必要とせず、第一原理に基づくモデリングに比べてエラーの少ないことが示される。
結果として得られたハイブリッドモデルは、純粋な第一原理のホワイトボックスモデルに比べて計算性能が向上した。
考慮されたユースケースは、医療領域内外における他のモデリングおよびシミュレーションアプリケーションの例として機能する。
論文 参考訳(メタデータ) (2021-09-10T13:48:43Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Integrating Electrochemical Modeling with Machine Learning for
Lithium-Ion Batteries [0.0]
本稿では,リチウムイオン電池(LiB)の高精度モデリングを実現するために,物理モデルと機械学習を統合する新しい手法を提案する。
本稿では,1粒子モデルと熱力学(SPMT)をフィードフォワードニューラルネットワーク(FNN)とを混合して,LiBの動的挙動の物理インフォームド学習を行うアプローチに基づく2つのハイブリッド物理機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-03-22T04:53:38Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。