Optomechanical ground-state cooling in a continuous and efficient
electro-optic transducer
- URL: http://arxiv.org/abs/2112.13429v1
- Date: Sun, 26 Dec 2021 18:16:48 GMT
- Title: Optomechanical ground-state cooling in a continuous and efficient
electro-optic transducer
- Authors: Benjamin M. Brubaker, Jonathan M. Kindem, Maxwell D. Urmey, Sarang
Mittal, Robert D. Delaney, Peter S. Burns, Michael R. Vissers, Konrad W.
Lehnert, Cindy A. Regal
- Abstract summary: A quantum link between microwave and optical frequencies would be an important step towards the realization of a quantum network of superconducting processors.
We present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband-cooled to its quantum ground state.
The thermal occupancy of the transducer's microwave mode is minimally affected by continuous laser illumination with power more than two orders of magnitude greater than that required for optomechanical ground-state cooling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demonstration of a quantum link between microwave and optical frequencies
would be an important step towards the realization of a quantum network of
superconducting processors. A major impediment to quantum electro-optic
transduction in all platforms explored to date is noise added by thermal
occupation of modes involved in the transduction process, and it has proved
difficult to realize low thermal occupancy concurrently with other desirable
features like high duty cycle and high efficiency. In this work, we present an
efficient and continuously operating electro-optomechanical transducer whose
mechanical mode has been optically sideband-cooled to its quantum ground state.
The transducer achieves a maximum efficiency of 47% and minimum input-referred
added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of
the transducer's microwave mode is minimally affected by continuous laser
illumination with power more than two orders of magnitude greater than that
required for optomechanical ground-state cooling.
Related papers
- Quantum-enabled continuous microwave-to-optics frequency conversion [6.646547697436899]
A quantum interface between microwave and optical photons is essential for entangling remote superconducting quantum processors.
We present a platform that meets these criteria, utilizing a combination of electrostatic and optomechanical interactions in devices made entirely from crystalline silicon.
arXiv Detail & Related papers (2024-06-04T18:34:01Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Terahertz-Mediated Microwave-to-Optical Transduction [0.0]
Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems.
Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption.
We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range.
arXiv Detail & Related papers (2023-07-07T19:31:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Ground-state Pulsed Cavity Electro-optics for Microwave-to-optical
Conversion [5.872328549827905]
We study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation.
Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state between microwave and optical frequencies.
arXiv Detail & Related papers (2020-10-22T02:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.