PreDisM: Pre-Disaster Modelling With CNN Ensembles for At-Risk
Communities
- URL: http://arxiv.org/abs/2112.13465v1
- Date: Sun, 26 Dec 2021 23:48:23 GMT
- Title: PreDisM: Pre-Disaster Modelling With CNN Ensembles for At-Risk
Communities
- Authors: Vishal Anand, Yuki Miura
- Abstract summary: We introduce PreDisM that employs an ensemble of ResNets and fully connected layers over decision trees to accurately estimate weakness of man-made structures to disaster-occurrences.
Our model performs well and is responsive to tuning across types of disasters and highlights the space of preemptive hazard damage modelling.
- Score: 0.32228025627337864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The machine learning community has recently had increased interest in the
climate and disaster damage domain due to a marked increased occurrences of
natural hazards (e.g., hurricanes, forest fires, floods, earthquakes). However,
not enough attention has been devoted to mitigating probable destruction from
impending natural hazards. We explore this crucial space by predicting
building-level damages on a before-the-fact basis that would allow state actors
and non-governmental organizations to be best equipped with resource
distribution to minimize or preempt losses. We introduce PreDisM that employs
an ensemble of ResNets and fully connected layers over decision trees to
capture image-level and meta-level information to accurately estimate weakness
of man-made structures to disaster-occurrences. Our model performs well and is
responsive to tuning across types of disasters and highlights the space of
preemptive hazard damage modelling.
Related papers
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM)
Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM.
This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid.
arXiv Detail & Related papers (2024-06-16T23:01:10Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
We present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting.
Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data.
arXiv Detail & Related papers (2023-10-23T07:01:09Z) - Transformer-based Flood Scene Segmentation for Developing Countries [1.7499351967216341]
Floods are large-scale natural disasters that often induce a massive number of deaths, extensive material damage, and economic turmoil.
Early Warning Systems (EWS) constantly assess water levels and other factors to forecast floods, to help minimize damage.
FloodTransformer is the first visual transformer-based model to detect and segment flooded areas from aerial images at disaster sites.
arXiv Detail & Related papers (2022-10-09T10:29:41Z) - Flood Prediction Using Machine Learning Models [0.0]
This paper aims to reduce the extreme risks of this natural disaster by providing a prediction for floods using different machine learning models.
With the outcome, a comparative analysis will be conducted to understand which model delivers a better accuracy.
arXiv Detail & Related papers (2022-08-02T03:59:43Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - A Machine learning approach for rapid disaster response based on
multi-modal data. The case of housing & shelter needs [0.0]
One of the most immediate needs of people affected by a disaster is finding shelter.
This paper proposes a machine learning workflow that aims to fuse and rapidly analyse multimodal data.
Based on a database of 19 characteristics for more than 200 disasters worldwide, a fusion approach at the decision level was used.
arXiv Detail & Related papers (2021-07-29T18:22:34Z) - Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment [0.7614628596146599]
We implement a novel self-attention based semantic segmentation model on a high resolution UAV dataset.
The result inspires to use self-attention schemes in natural disaster damage assessment which will save human lives and reduce economic losses.
arXiv Detail & Related papers (2021-05-30T13:39:03Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.