Transformer-based Flood Scene Segmentation for Developing Countries
- URL: http://arxiv.org/abs/2210.04218v1
- Date: Sun, 9 Oct 2022 10:29:41 GMT
- Title: Transformer-based Flood Scene Segmentation for Developing Countries
- Authors: Ahan M R, Roshan Roy, Shreyas Sunil Kulkarni, Vaibhav Soni, Ashish
Chittora
- Abstract summary: Floods are large-scale natural disasters that often induce a massive number of deaths, extensive material damage, and economic turmoil.
Early Warning Systems (EWS) constantly assess water levels and other factors to forecast floods, to help minimize damage.
FloodTransformer is the first visual transformer-based model to detect and segment flooded areas from aerial images at disaster sites.
- Score: 1.7499351967216341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floods are large-scale natural disasters that often induce a massive number
of deaths, extensive material damage, and economic turmoil. The effects are
more extensive and longer-lasting in high-population and low-resource
developing countries. Early Warning Systems (EWS) constantly assess water
levels and other factors to forecast floods, to help minimize damage.
Post-disaster, disaster response teams undertake a Post Disaster Needs
Assessment (PDSA) to assess structural damage and determine optimal strategies
to respond to highly affected neighbourhoods. However, even today in developing
countries, EWS and PDSA analysis of large volumes of image and video data is
largely a manual process undertaken by first responders and volunteers. We
propose FloodTransformer, which to the best of our knowledge, is the first
visual transformer-based model to detect and segment flooded areas from aerial
images at disaster sites. We also propose a custom metric, Flood Capacity (FC)
to measure the spatial extent of water coverage and quantify the segmented
flooded area for EWS and PDSA analyses. We use the SWOC Flood segmentation
dataset and achieve 0.93 mIoU, outperforming all other methods. We further show
the robustness of this approach by validating across unseen flood images from
other flood data sources.
Related papers
- Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
We present DAVI (Disaster Assessment with VIsion foundation model), which overcomes domain disparities and detects structural damage without requiring ground-truth labels of the target region.
DAVI integrates task-specific knowledge from a model trained on source regions with an image segmentation foundation model to generate pseudo labels of possible damage in the target region.
It then employs a two-stage refinement process, targeting both the pixel and overall image, to more accurately pinpoint changes in disaster-struck areas.
arXiv Detail & Related papers (2024-06-12T09:21:28Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
We leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images.
We build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains.
We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings.
arXiv Detail & Related papers (2024-05-22T16:07:05Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
We create a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh.
We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models.
We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents.
arXiv Detail & Related papers (2023-11-15T18:49:29Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
We explore the implementation of deep learning techniques for precise building damage assessment in the context of natural hazards.
We tackle the challenges of generalization to novel disasters and regions while accounting for the influence of low-quality and noisy labels.
Our research findings showcase the potential and limitations of advanced AI solutions in enhancing the impact assessment of climate change-induced extreme weather events.
arXiv Detail & Related papers (2023-09-03T03:37:04Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Flood Prediction Using Machine Learning Models [0.0]
This paper aims to reduce the extreme risks of this natural disaster by providing a prediction for floods using different machine learning models.
With the outcome, a comparative analysis will be conducted to understand which model delivers a better accuracy.
arXiv Detail & Related papers (2022-08-02T03:59:43Z) - Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment [0.7614628596146599]
We implement a novel self-attention based semantic segmentation model on a high resolution UAV dataset.
The result inspires to use self-attention schemes in natural disaster damage assessment which will save human lives and reduce economic losses.
arXiv Detail & Related papers (2021-05-30T13:39:03Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.