Solving time dependent Fokker-Planck equations via temporal normalizing
flow
- URL: http://arxiv.org/abs/2112.14012v1
- Date: Tue, 28 Dec 2021 06:39:14 GMT
- Title: Solving time dependent Fokker-Planck equations via temporal normalizing
flow
- Authors: Xiaodong Feng, Li Zeng, Tao Zhou
- Abstract summary: We propose an adaptive learning approach based on temporal normalizing flows for solving time-dependent Fokker-Planck equations.
Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high dimensional problems.
- Score: 7.3990175502763185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose an adaptive learning approach based on temporal
normalizing flows for solving time-dependent Fokker-Planck (TFP) equations. It
is well known that solutions of such equations are probability density
functions, and thus our approach relies on modelling the target solutions with
the temporal normalizing flows. The temporal normalizing flow is then trained
based on the TFP loss function, without requiring any labeled data. Being a
machine learning scheme, the proposed approach is mesh-free and can be easily
applied to high dimensional problems. We present a variety of test problems to
show the effectiveness of the learning approach.
Related papers
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - PINF: Continuous Normalizing Flows for Physics-Constrained Deep Learning [8.000355537589224]
In this paper, we introduce Physics-Informed Normalizing Flows (PINF), a novel extension of continuous normalizing flows.
Our method, which is mesh-free and causality-free, can efficiently solve high dimensional time-dependent and steady-state Fokker-Planck equations.
arXiv Detail & Related papers (2023-09-26T15:38:57Z) - Self-Consistent Velocity Matching of Probability Flows [22.2542921090435]
We present a discretization-free scalable framework for solving a class of partial differential equations (PDEs)
The main observation is that the time-varying velocity field of the PDE solution needs to be self-consistent.
We use an iterative formulation with a biased gradient estimator that bypasses significant computational obstacles with strong empirical performance.
arXiv Detail & Related papers (2023-01-31T16:17:18Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
We introduce an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability.
Unlike the dynamics, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time.
Our approach is based on recent advances in score-based diffusion for generative modeling.
arXiv Detail & Related papers (2022-06-09T17:37:09Z) - Adapting reservoir computing to solve the Schr\"odinger equation [0.0]
Reservoir computing is a machine learning algorithm that excels at predicting the evolution of time series.
We adapt this methodology to integrate the time-dependent Schr"odinger equation, propagating an initial wavefunction in time.
arXiv Detail & Related papers (2022-02-12T19:28:11Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
We propose a new regularization technique: randomly sampling the end time of the ODE during training.
The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks.
We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.
arXiv Detail & Related papers (2020-06-18T17:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.