DAS: A deep adaptive sampling method for solving partial differential
equations
- URL: http://arxiv.org/abs/2112.14038v1
- Date: Tue, 28 Dec 2021 08:37:47 GMT
- Title: DAS: A deep adaptive sampling method for solving partial differential
equations
- Authors: Kejun Tang, Xiaoliang Wan, Chao Yang
- Abstract summary: We propose a deep adaptive sampling (DAS) method for solving partial differential equations (PDEs)
Deep neural networks are utilized to approximate the solutions of PDEs and deep generative models are employed to generate new collocation points that refine the training set.
We present a theoretical analysis to show that the proposed DAS method can reduce the error bound and demonstrate its effectiveness with numerical experiments.
- Score: 2.934397685379054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we propose a deep adaptive sampling (DAS) method for solving
partial differential equations (PDEs), where deep neural networks are utilized
to approximate the solutions of PDEs and deep generative models are employed to
generate new collocation points that refine the training set. The overall
procedure of DAS consists of two components: solving the PDEs by minimizing the
residual loss on the collocation points in the training set and generating a
new training set to further improve the accuracy of current approximate
solution. In particular, we treat the residual as a probability density
function and approximate it with a deep generative model, called KRnet. The new
samples from KRnet are consistent with the distribution induced by the
residual, i.e., more samples are located in the region of large residual and
less samples are located in the region of small residual. Analogous to
classical adaptive methods such as the adaptive finite element, KRnet acts as
an error indicator that guides the refinement of the training set. Compared to
the neural network approximation obtained with uniformly distributed
collocation points, the developed algorithms can significantly improve the
accuracy, especially for low regularity and high-dimensional problems. We
present a theoretical analysis to show that the proposed DAS method can reduce
the error bound and demonstrate its effectiveness with numerical experiments.
Related papers
- A hybrid FEM-PINN method for time-dependent partial differential equations [9.631238071993282]
We present a hybrid numerical method for solving evolution differential equations (PDEs) by merging the time finite element method with deep neural networks.
The advantages of such a hybrid formulation are twofold: statistical errors are avoided for the integral in the time direction, and the neural network's output can be regarded as a set of reduced spatial basis functions.
arXiv Detail & Related papers (2024-09-04T15:28:25Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Adaptive importance sampling for Deep Ritz [7.123920027048777]
We introduce an adaptive sampling method for the Deep Ritz method aimed at solving partial differential equations (PDEs)
One network is employed to approximate the solution of PDEs, while the other one is a deep generative model used to generate new collocation points to refine the training set.
Compared to the original Deep Ritz method, the proposed adaptive method improves accuracy, especially for problems characterized by low regularity and high dimensionality.
arXiv Detail & Related papers (2023-10-26T06:35:08Z) - Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs [2.526490864645154]
We propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set.
The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile.
arXiv Detail & Related papers (2023-05-30T02:59:18Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A Novel Adaptive Causal Sampling Method for Physics-Informed Neural
Networks [35.25394937917774]
Informed Neural Networks (PINNs) have become a kind of attractive machine learning method for obtaining solutions of partial differential equations (PDEs)
We introduce temporal causality into adaptive sampling and propose a novel adaptive causal sampling method to improve the performance and efficiency of PINs.
We demonstrate that by utilizing such a relatively simple sampling method, prediction performance can be improved up to two orders of magnitude compared with state-of-the-art results.
arXiv Detail & Related papers (2022-10-24T01:51:08Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.