Multitask Learning and Bandits via Robust Statistics
- URL: http://arxiv.org/abs/2112.14233v5
- Date: Sun, 28 Jul 2024 04:42:39 GMT
- Title: Multitask Learning and Bandits via Robust Statistics
- Authors: Kan Xu, Hamsa Bastani,
- Abstract summary: Decision-makers often simultaneously face many related but heterogeneous learning problems.
We propose a novel two-stage multitask learning estimator that exploits this structure in a sample-efficient way.
Our estimator yields improved sample complexity bounds in the feature dimension $d$ relative to commonly-employed estimators.
- Score: 3.103098467546532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision-makers often simultaneously face many related but heterogeneous learning problems. For instance, a large retailer may wish to learn product demand at different stores to solve pricing or inventory problems, making it desirable to learn jointly for stores serving similar customers; alternatively, a hospital network may wish to learn patient risk at different providers to allocate personalized interventions, making it desirable to learn jointly for hospitals serving similar patient populations. Motivated by real datasets, we study a natural setting where the unknown parameter in each learning instance can be decomposed into a shared global parameter plus a sparse instance-specific term. We propose a novel two-stage multitask learning estimator that exploits this structure in a sample-efficient way, using a unique combination of robust statistics (to learn across similar instances) and LASSO regression (to debias the results). Our estimator yields improved sample complexity bounds in the feature dimension $d$ relative to commonly-employed estimators; this improvement is exponential for "data-poor" instances, which benefit the most from multitask learning. We illustrate the utility of these results for online learning by embedding our multitask estimator within simultaneous contextual bandit algorithms. We specify a dynamic calibration of our estimator to appropriately balance the bias-variance tradeoff over time, improving the resulting regret bounds in the context dimension $d$. Finally, we illustrate the value of our approach on synthetic and real datasets.
Related papers
- Collaborative Learning with Shared Linear Representations: Statistical Rates and Optimal Algorithms [13.643155483461028]
Collaborative learning enables multiple clients to learn shared feature representations across local data distributions.
We identify the optimal statistical rate when clients share a common low-dimensional linear representation.
Our results show that, at a system level, collaboration always reduces overall sample complexity compared to independent client learning.
arXiv Detail & Related papers (2024-09-07T21:53:01Z) - Collaborative Learning with Different Labeling Functions [7.228285747845779]
We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions.
We show that, when the data distributions satisfy a weaker realizability assumption, sample-efficient learning is still feasible.
arXiv Detail & Related papers (2024-02-16T04:32:22Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
Social and real-world considerations have given rise to multi-distribution learning paradigms.
We establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity.
Our algorithm design and analysis are enabled by our extensions of online learning techniques for solving zero-sum games.
arXiv Detail & Related papers (2022-10-22T19:07:26Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
We propose to enable deep neural networks with the ability to learn the sample relationships from each mini-batch.
BatchFormer is applied into the batch dimension of each mini-batch to implicitly explore sample relationships during training.
We perform extensive experiments on over ten datasets and the proposed method achieves significant improvements on different data scarcity applications.
arXiv Detail & Related papers (2022-03-03T05:31:33Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
Estimating mutual information between continuous random variables is often intractable and challenging for high-dimensional data.
Recent progress has leveraged neural networks to optimize variational lower bounds on mutual information.
Our approach is based on training a classifier that provides the probability that a data sample pair is drawn from the joint distribution.
arXiv Detail & Related papers (2020-10-05T04:19:27Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.