Collaborative Learning with Different Labeling Functions
- URL: http://arxiv.org/abs/2402.10445v3
- Date: Thu, 23 May 2024 01:09:25 GMT
- Title: Collaborative Learning with Different Labeling Functions
- Authors: Yuyang Deng, Mingda Qiao,
- Abstract summary: We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions.
We show that, when the data distributions satisfy a weaker realizability assumption, sample-efficient learning is still feasible.
- Score: 7.228285747845779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions, while minimizing the number of samples drawn from them in total. Unlike in the usual collaborative learning setup, it is not assumed that there exists a single classifier that is simultaneously accurate for all distributions. We show that, when the data distributions satisfy a weaker realizability assumption, which appeared in [Crammer and Mansour, 2012] in the context of multi-task learning, sample-efficient learning is still feasible. We give a learning algorithm based on Empirical Risk Minimization (ERM) on a natural augmentation of the hypothesis class, and the analysis relies on an upper bound on the VC dimension of this augmented class. In terms of the computational efficiency, we show that ERM on the augmented hypothesis class is NP-hard, which gives evidence against the existence of computationally efficient learners in general. On the positive side, for two special cases, we give learners that are both sample- and computationally-efficient.
Related papers
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - A Mathematical Model for Curriculum Learning for Parities [8.522887729678637]
We introduce a CL model for learning the class of k-parities on d bits of a binary string with a neural network trained by gradient descent.
We show that a wise choice of training examples involving two or more product distributions, allows to reduce significantly the computational cost of learning this class of functions.
We also show that for another class of functions - namely the Hamming mixtures' - CL strategies involving a bounded number of product distributions are not beneficial.
arXiv Detail & Related papers (2023-01-31T18:25:36Z) - A Moment-Matching Approach to Testable Learning and a New
Characterization of Rademacher Complexity [15.746613321517282]
We give a powerful new approach for developing algorithms for testable learning using tools from moment matching and metric agnostic in probability.
Surprisingly, we show that the information-theoretic complexity of testable learning is tightly characterized by the Rademacher complexity of the concept class.
arXiv Detail & Related papers (2022-11-23T21:29:51Z) - Learning versus Refutation in Noninteractive Local Differential Privacy [133.80204506727526]
We study two basic statistical tasks in non-interactive local differential privacy (LDP): learning and refutation.
Our main result is a complete characterization of the sample complexity of PAC learning for non-interactive LDP protocols.
arXiv Detail & Related papers (2022-10-26T03:19:24Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
Social and real-world considerations have given rise to multi-distribution learning paradigms.
We establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity.
Our algorithm design and analysis are enabled by our extensions of online learning techniques for solving zero-sum games.
arXiv Detail & Related papers (2022-10-22T19:07:26Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - A Theory of Universal Learning [26.51949485387526]
We show that there are only three possible rates of universal learning.
We show that the learning curves of any given concept class decay either at an exponential, or arbitrarily slow rates.
arXiv Detail & Related papers (2020-11-09T15:10:32Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.