論文の概要: Fake or Genuine? Contextualised Text Representation for Fake Review
Detection
- arxiv url: http://arxiv.org/abs/2112.14343v1
- Date: Wed, 29 Dec 2021 00:54:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 23:25:06.315581
- Title: Fake or Genuine? Contextualised Text Representation for Fake Review
Detection
- Title(参考訳): 偽物か本物か?
偽レビュー検出のための文脈化テキスト表現
- Authors: Rami Mohawesh, Shuxiang Xu, Matthew Springer, Muna Al-Hawawreh and
Sumbal Maqsood
- Abstract要約: 本稿では, トランスフォーマーアーキテクチャを用いて, 偽レビューのシーケンス中に隠されたパターンを発見し, 正確に検出する新しいアンサンブルモデルを提案する。
半現実的なベンチマークデータセットを用いた実験結果から,提案モデルが最先端モデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.4724825031148411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online reviews have a significant influence on customers' purchasing
decisions for any products or services. However, fake reviews can mislead both
consumers and companies. Several models have been developed to detect fake
reviews using machine learning approaches. Many of these models have some
limitations resulting in low accuracy in distinguishing between fake and
genuine reviews. These models focused only on linguistic features to detect
fake reviews and failed to capture the semantic meaning of the reviews. To deal
with this, this paper proposes a new ensemble model that employs transformer
architecture to discover the hidden patterns in a sequence of fake reviews and
detect them precisely. The proposed approach combines three transformer models
to improve the robustness of fake and genuine behaviour profiling and modelling
to detect fake reviews. The experimental results using semi-real benchmark
datasets showed the superiority of the proposed model over state-of-the-art
models.
- Abstract(参考訳): オンラインレビューは、顧客による製品やサービスの購入決定に大きな影響を与える。
しかし、偽レビューは消費者と企業の両方を誤解させる可能性がある。
機械学習を用いて偽レビューを検出するために、いくつかのモデルが開発された。
これらのモデルの多くは、偽レビューと偽レビューを区別する精度にいくつかの制限がある。
これらのモデルは、偽レビューを検出するための言語的特徴のみに焦点を当て、レビューの意味を捉えられなかった。
そこで本研究では,トランスフォーマーアーキテクチャを用いて,偽レビューのシーケンス中の隠れパターンを発見し,正確に検出する新しいアンサンブルモデルを提案する。
提案手法は,3つのトランスフォーマーモデルを組み合わせて,偽の行動プロファイルとモデル作成のロバスト性を改善し,偽のレビューを検出する。
半実ベンチマークデータセットを用いた実験の結果,提案モデルが最先端モデルよりも優れていることがわかった。
関連論文リスト
- Finding fake reviews in e-commerce platforms by using hybrid algorithms [0.0]
そこで我々は, 感情分析のための革新的なアンサンブルアプローチを提案し, 偽レビューの発見を行う。
私たちのアンサンブルアーキテクチャは、さまざまなモデルを戦略的に組み合わせて、固有の弱点を緩和しながら、その強みを活かします。
本研究は, 偽レビュー発見の最先端化において, アンサンブル技術の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-04-09T14:25:27Z) - AiGen-FoodReview: A Multimodal Dataset of Machine-Generated Restaurant
Reviews and Images on Social Media [57.70351255180495]
AiGen-FoodReviewは、20,144のレストランレビューイメージペアからなるデータセットである。
FLAVAで99.80%のマルチモーダル精度を達成し,一様・多モーダル検出モデルについて検討する。
この論文は、データセットをオープンソース化し、偽レビュー検出装置を公開し、非モーダルかつマルチモーダルな偽レビュー検出タスクでの使用を推奨し、合成データと真正データにおける言語的特徴と視覚的特徴を評価することで貢献する。
論文 参考訳(メタデータ) (2024-01-16T20:57:36Z) - Verifying the Robustness of Automatic Credibility Assessment [79.08422736721764]
テキスト分類法は信頼性の低い内容を検出する手段として広く研究されている。
入力テキストの無意味な変更は、モデルを誤解させることがある。
偽情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAを紹介する。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Combat AI With AI: Counteract Machine-Generated Fake Restaurant Reviews
on Social Media [77.34726150561087]
我々は、高品質なYelpレビューを活用して、OpenAI GPTレビュー作成者から偽レビューを生成することを提案する。
このモデルを適用して、非エリートレビューを予測し、複数の次元にまたがるパターンを識別する。
ソーシャルメディアプラットフォームは、マシン生成の偽レビューによって継続的に挑戦されていることを示す。
論文 参考訳(メタデータ) (2023-02-10T19:40:10Z) - Online Fake Review Detection Using Supervised Machine Learning And BERT
Model [0.0]
テキストから単語の埋め込みを抽出するためにBERT(Bidirectional Representation from Transformers)モデルを提案する(レビュー)。
その結果、SVM分類器は精度で他より優れており、f1スコアは精度87.81%であることがわかった。
論文 参考訳(メタデータ) (2023-01-09T09:40:56Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Fake Reviews Detection through Analysis of Linguistic Features [1.609940380983903]
本稿では,偽レビューを識別するための自然言語処理手法について検討する。
ニセモノと信頼できるオンラインレビューを区別するために,15の言語的特徴について検討した。
これらの言語的特徴を用いて,実際のレビューから偽の識別を高精度に行うことができた。
論文 参考訳(メタデータ) (2020-10-08T21:16:30Z) - Context-aware Helpfulness Prediction for Online Product Reviews [34.47368084659301]
本稿では,レビューの有用性を評価するニューラルディープ・ラーニング・モデルを提案する。
このモデルは畳み込みニューラルネットワーク(CNN)とコンテキスト認識符号化機構に基づいている。
我々は、人間の注釈付きデータセット上でモデルを検証し、その結果、既存のモデルよりも有益性予測に優れていたことを示す。
論文 参考訳(メタデータ) (2020-04-27T18:19:26Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
ユーザレビューのコーパスから合成データセットを作成し、レビューをサンプリングし、要約のふりをして、ノイズのあるバージョンを生成します。
テスト時に、モデルは本物のレビューを受け入れ、健全な意見を含む要約を生成し、合意に達しないものをノイズとして扱います。
論文 参考訳(メタデータ) (2020-04-21T16:54:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。