論文の概要: Context-aware Helpfulness Prediction for Online Product Reviews
- arxiv url: http://arxiv.org/abs/2004.13078v1
- Date: Mon, 27 Apr 2020 18:19:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:49:29.634073
- Title: Context-aware Helpfulness Prediction for Online Product Reviews
- Title(参考訳): オンライン製品レビューにおけるコンテキスト認識型ヘルプフルネス予測
- Authors: Iyiola E. Olatunji, Xin Li, Wai Lam
- Abstract要約: 本稿では,レビューの有用性を評価するニューラルディープ・ラーニング・モデルを提案する。
このモデルは畳み込みニューラルネットワーク(CNN)とコンテキスト認識符号化機構に基づいている。
我々は、人間の注釈付きデータセット上でモデルを検証し、その結果、既存のモデルよりも有益性予測に優れていたことを示す。
- 参考スコア(独自算出の注目度): 34.47368084659301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling and prediction of review helpfulness has become more predominant due
to proliferation of e-commerce websites and online shops. Since the
functionality of a product cannot be tested before buying, people often rely on
different kinds of user reviews to decide whether or not to buy a product.
However, quality reviews might be buried deep in the heap of a large amount of
reviews. Therefore, recommending reviews to customers based on the review
quality is of the essence. Since there is no direct indication of review
quality, most reviews use the information that ''X out of Y'' users found the
review helpful for obtaining the review quality. However, this approach
undermines helpfulness prediction because not all reviews have statistically
abundant votes. In this paper, we propose a neural deep learning model that
predicts the helpfulness score of a review. This model is based on
convolutional neural network (CNN) and a context-aware encoding mechanism which
can directly capture relationships between words irrespective of their distance
in a long sequence. We validated our model on human annotated dataset and the
result shows that our model significantly outperforms existing models for
helpfulness prediction.
- Abstract(参考訳): 電子商取引サイトやオンラインショップの普及により,レビュー支援のモデル化と予測が主流となっている。
製品の機能が購入前にテストできないため、人々は製品を購入するかどうかを決めるために、さまざまな種類のユーザレビューに頼ることが多い。
しかし、品質レビューは大量のレビューの山深くに埋もれてしまうかもしれない。
したがって、レビュー品質に基づいたレビューを顧客に推奨することが重要です。
レビュー品質の直接の表示がないため、ほとんどのレビューでは'x out of y' のユーザーがレビュー品質を得るのに役立ちそうな情報を使っている。
しかし、すべてのレビューに統計学的に豊富な投票があるわけではないため、このアプローチは有用性予測を損なう。
本稿では,レビューの有用度スコアを予測するニューラル深層学習モデルを提案する。
このモデルは畳み込みニューラルネットワーク(CNN)とコンテキスト認識符号化機構に基づいており、長いシーケンスで単語間の関係を直接キャプチャすることができる。
我々は,人間の注釈付きデータセット上でのモデル検証を行い,提案手法が既存のモデルよりも有益であることを示す。
関連論文リスト
- Analytical and Empirical Study of Herding Effects in Recommendation Systems [72.6693986712978]
評価アグリゲーションルールとショートリストされた代表レビューを用いて製品評価を管理する方法について検討する。
本稿では,Amazon と TripAdvisor の収束速度を向上させるために,適切な信頼度評価アグリゲーションルールが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-20T14:29:23Z) - On the Role of Reviewer Expertise in Temporal Review Helpfulness
Prediction [5.381004207943597]
有用なレビューを識別する既存の方法は、主にレビューテキストに焦点をあて、レビューを投稿する(1)とレビューを投稿する(2)の2つの重要な要素を無視する。
本稿では,過去のレビュー履歴から得られたレビュアの専門知識と,レビューの時間的ダイナミクスを統合し,レビューの有用性を自動的に評価するモデルを提案する。
論文 参考訳(メタデータ) (2023-02-22T23:41:22Z) - Evaluating the Effectiveness of Pre-trained Language Models in
Predicting the Helpfulness of Online Product Reviews [0.21485350418225244]
オンライン製品レビューの有用性を予測するため,RoBERTaとXLM-R言語モデルの比較を行った。
実験にはAmazonレビューデータセットを使用します。
論文 参考訳(メタデータ) (2023-02-19T18:22:59Z) - On Faithfulness and Coherence of Language Explanations for
Recommendation Systems [8.143715142450876]
この研究は、最先端モデルとそのレビュー生成コンポーネントを探索する。
得られた説明は不安定であり, 推定評価の合理的な根拠として考える前に, さらなる評価が必要であることを示す。
論文 参考訳(メタデータ) (2022-09-12T17:00:31Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z) - E-commerce Query-based Generation based on User Review [1.484852576248587]
本稿では,従来のユーザによるレビューに基づいて,ユーザの質問に対する回答を生成するための新しいセク2seqベースのテキスト生成モデルを提案する。
ユーザの質問や感情の極性が与えられた場合,関心事の側面を抽出し,過去のユーザレビューを要約した回答を生成する。
論文 参考訳(メタデータ) (2020-11-11T04:58:31Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
本稿では,レビューテキストを用いてレコメンデーションシステムの改善を目指す,新たな作業体系について検討する。
実験条件やデータ前処理に変化はあるものの, 論文間で結果がコピーされていることから, 報告結果にいくつかの相違点がみられた。
さらなる調査では、リコメンデーションのためのユーザレビューの"重要"に関して、はるかに大きな問題に関する議論が求められている。
論文 参考訳(メタデータ) (2020-05-25T16:30:05Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
ユーザレビューのコーパスから合成データセットを作成し、レビューをサンプリングし、要約のふりをして、ノイズのあるバージョンを生成します。
テスト時に、モデルは本物のレビューを受け入れ、健全な意見を含む要約を生成し、合意に達しないものをノイズとして扱います。
論文 参考訳(メタデータ) (2020-04-21T16:54:57Z) - Automating App Review Response Generation [67.58267006314415]
本稿では,レビューと回答の知識関係を学習することで,レビュー応答を自動的に生成する新しいアプローチRRGenを提案する。
58のアプリと309,246のレビュー-レスポンスペアの実験では、RRGenはBLEU-4の点で少なくとも67.4%のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-02-10T05:23:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。