論文の概要: Machine Learning Methods for Spectral Efficiency Prediction in Massive
MIMO Systems
- arxiv url: http://arxiv.org/abs/2112.14423v1
- Date: Wed, 29 Dec 2021 07:03:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 21:43:12.508207
- Title: Machine Learning Methods for Spectral Efficiency Prediction in Massive
MIMO Systems
- Title(参考訳): 大規模MIMOシステムにおけるスペクトル効率予測のための機械学習手法
- Authors: Evgeny Bobrov (1, 3), Sergey Troshin (2), Nadezhda Chirkova (2),
Ekaterina Lobacheva (2), Sviatoslav Panchenko (3, 5), Dmitry Vetrov (2, 4),
Dmitry Kropotov (1, 2) ((1) Lomonosov MSU, Russia, (2) HSE University,
Russia, (3) MRC, Huawei Technologies, Russia, (4) AIRI, Russia, (5) MIPT,
Russia)
- Abstract要約: 本研究では,特定のプリコーディング方式のスペクトル効率(SE)値を最短時間で推定する機械学習手法について検討する。
平均パーセンテージ誤差(MAPE)の最も良い結果は、ソートされた特徴よりも勾配が上昇し、線形モデルは予測精度が悪くなることを示す。
そこで本研究では,Quadrigaシミュレータによって生成される幅広いシナリオにおける提案アルゴリズムの実用性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Channel decoding, channel detection, channel assessment, and resource
management for wireless multiple-input multiple-output (MIMO) systems are all
examples of problems where machine learning (ML) can be successfully applied.
In this paper, we study several ML approaches to solve the problem of
estimating the spectral efficiency (SE) value for a certain precoding scheme,
preferably in the shortest possible time. The best results in terms of mean
average percentage error (MAPE) are obtained with gradient boosting over sorted
features, while linear models demonstrate worse prediction quality. Neural
networks perform similarly to gradient boosting, but they are more resource-
and time-consuming because of hyperparameter tuning and frequent retraining. We
investigate the practical applicability of the proposed algorithms in a wide
range of scenarios generated by the Quadriga simulator. In almost all
scenarios, the MAPE achieved using gradient boosting and neural networks is
less than 10\%.
- Abstract(参考訳): 無線複数入力多重出力(mimo)システムにおけるチャネルデコード、チャネル検出、チャネル評価、リソース管理は、機械学習(ml)がうまく適用できる問題の例である。
本稿では,特定のプリコーディング方式のスペクトル効率(SE)値を最短時間で推定するML手法について検討する。
平均パーセンテージ誤差(MAPE)の最も良い結果は、ソートされた特徴よりも勾配が上昇し、線形モデルは予測精度が悪くなることを示す。
ニューラルネットワークは勾配向上と同様に機能するが、ハイパーパラメータチューニングと頻繁な再トレーニングのため、リソースと時間を要する。
本稿では,quadrigaシミュレータが生成する幅広いシナリオにおける提案アルゴリズムの実用的適用性について検討する。
ほぼすべてのシナリオにおいて、勾配ブースティングとニューラルネットワークを使用して達成されたMAPEは10%未満である。
関連論文リスト
- Advancing Machine Learning in Industry 4.0: Benchmark Framework for Rare-event Prediction in Chemical Processes [0.0]
本稿では,様々な複雑さのMLアルゴリズムを比較し,レアイベント予測のための新しい総合的ベンチマークフレームワークを提案する。
異常事象を予測するための最適ML戦略を特定し,より安全で信頼性の高いプラント操作を実現する。
論文 参考訳(メタデータ) (2024-08-31T15:41:10Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Machine Learning-enhanced Receive Processing for MU-MIMO OFDM Systems [15.423422040627331]
機械学習は、マルチユーザマルチインプットマルチアウトプット(MU-MIMO)受信処理を改善するために使用できる。
本稿では,従来の受信機の利点を保ちつつ,特定の部品をMLコンポーネントで強化する新たな戦略を提案する。
論文 参考訳(メタデータ) (2021-06-30T14:02:27Z) - Behavioral Model Inference of Black-box Software using Deep Neural
Networks [1.6593369275241105]
テストや異常検出といった多くのソフトウェアエンジニアリングタスクは、ソフトウェアの振る舞いモデルを予測する能力の恩恵を受けることができる。
既存の推論アプローチのほとんどは、実行シーケンスを収集するコードへのアクセスを前提としている。
本稿では,この手法を用いて状態変化を正確に検出する方法と,推定されたモデルがトランスフォーメーション学習シナリオにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2021-01-13T09:23:37Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
従来の線形最小平均二乗誤差(LMMSE)アーキテクチャ上に構築したML強化MU-MIMO受信機を提案する。
cnnはチャネル推定誤差の2次統計量の近似を計算するために用いられる。
CNNベースのデマッパーは、多数の周波数分割多重記号とサブキャリアを共同で処理する。
論文 参考訳(メタデータ) (2020-12-15T09:55:37Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。