論文の概要: Behavioral Model Inference of Black-box Software using Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2101.04948v1
- Date: Wed, 13 Jan 2021 09:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 07:52:23.870464
- Title: Behavioral Model Inference of Black-box Software using Deep Neural
Networks
- Title(参考訳): ディープニューラルネットワークを用いたブラックボックスソフトウェアの行動モデル推論
- Authors: Mohammad Jafar Mashhadi, Foozhan Ataiefard, Hadi Hemmati and Niel
Walkinshaw
- Abstract要約: テストや異常検出といった多くのソフトウェアエンジニアリングタスクは、ソフトウェアの振る舞いモデルを予測する能力の恩恵を受けることができる。
既存の推論アプローチのほとんどは、実行シーケンスを収集するコードへのアクセスを前提としている。
本稿では,この手法を用いて状態変化を正確に検出する方法と,推定されたモデルがトランスフォーメーション学習シナリオにどのように適用できるかを示す。
- 参考スコア(独自算出の注目度): 1.6593369275241105
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many software engineering tasks, such as testing, and anomaly detection can
benefit from the ability to infer a behavioral model of the software.Most
existing inference approaches assume access to code to collect execution
sequences. In this paper, we investigate a black-box scenario, where the system
under analysis cannot be instrumented, in this granular fashion.This scenario
is particularly prevalent with control systems' log analysis in the form of
continuous signals. In this situation, an execution trace amounts to a
multivariate time-series of input and output signals, where different states of
the system correspond to different `phases` in the time-series. The main
challenge is to detect when these phase changes take place. Unfortunately, most
existing solutions are either univariate, make assumptions on the data
distribution, or have limited learning power.Therefore, we propose a hybrid
deep neural network that accepts as input a multivariate time series and
applies a set of convolutional and recurrent layers to learn the non-linear
correlations between signals and the patterns over time.We show how this
approach can be used to accurately detect state changes, and how the inferred
models can be successfully applied to transfer-learning scenarios, to
accurately process traces from different products with similar execution
characteristics. Our experimental results on two UAV autopilot case studies
indicate that our approach is highly accurate (over 90% F1 score for state
classification) and significantly improves baselines (by up to 102% for change
point detection).Using transfer learning we also show that up to 90% of the
maximum achievable F1 scores in the open-source case study can be achieved by
reusing the trained models from the industrial case and only fine tuning them
using as low as 5 labeled samples, which reduces the manual labeling effort by
98%.
- Abstract(参考訳): テストや異常検出といった多くのソフトウェアエンジニアリングタスクは、ソフトウェアの振る舞いモデルを推論する能力から恩恵を受ける可能性がある。
本稿では,分析対象のシステムをこの粒度的に計測できないブラックボックスシナリオについて検討し,このシナリオは連続的な信号の形で制御システムのログ解析に特に有効である。
この状況では、実行トレースは入力信号と出力信号の多変量時系列に比例し、システムの異なる状態が時系列内の異なる「フェーズ」に対応する。
主な課題は、これらのフェーズがいつ変化するかを検出することである。
Unfortunately, most existing solutions are either univariate, make assumptions on the data distribution, or have limited learning power.Therefore, we propose a hybrid deep neural network that accepts as input a multivariate time series and applies a set of convolutional and recurrent layers to learn the non-linear correlations between signals and the patterns over time.We show how this approach can be used to accurately detect state changes, and how the inferred models can be successfully applied to transfer-learning scenarios, to accurately process traces from different products with similar execution characteristics.
Our experimental results on two UAV autopilot case studies indicate that our approach is highly accurate (over 90% F1 score for state classification) and significantly improves baselines (by up to 102% for change point detection).Using transfer learning we also show that up to 90% of the maximum achievable F1 scores in the open-source case study can be achieved by reusing the trained models from the industrial case and only fine tuning them using as low as 5 labeled samples, which reduces the manual labeling effort by 98%.
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Robust Audio Anomaly Detection [10.75127981612396]
提案されたアプローチは、トレーニングデータセットにラベル付き異常が存在することを前提としません。
時間力学は、注意機構を付加した繰り返し層を用いてモデル化される。
ネットワークの出力は、外向きの頑健な確率密度関数である。
論文 参考訳(メタデータ) (2022-02-03T17:19:42Z) - Machine Learning Methods for Spectral Efficiency Prediction in Massive
MIMO Systems [0.0]
本研究では,特定のプリコーディング方式のスペクトル効率(SE)値を最短時間で推定する機械学習手法について検討する。
平均パーセンテージ誤差(MAPE)の最も良い結果は、ソートされた特徴よりも勾配が上昇し、線形モデルは予測精度が悪くなることを示す。
そこで本研究では,Quadrigaシミュレータによって生成される幅広いシナリオにおける提案アルゴリズムの実用性について検討する。
論文 参考訳(メタデータ) (2021-12-29T07:03:10Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Hybrid Deep Neural Networks to Infer State Models of Black-Box Systems [2.294541416972175]
本稿では,システムの入力/出力信号当たりの時系列を入力として受け入れるハイブリッドディープニューラルネットワークを提案する。
当社のアプローチを,50万行のCコードで,業界パートナのUAV自動操縦ソリューションに適用しました。
論文 参考訳(メタデータ) (2020-08-26T23:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。