A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration
- URL: http://arxiv.org/abs/2112.14448v1
- Date: Wed, 29 Dec 2021 08:20:23 GMT
- Title: A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration
- Authors: Hesheng Tang, Hu Yang, Yangyang Liao, Liyu Xie
- Abstract summary: This paper proposed a transfer learning enhanced the physics-informed neural network (PINN) model to study the VIV (2D)
The physics-informed neural network, when used in conjunction with the transfer learning method, enhances learning efficiency and keeps predictability in the target task by common characteristics knowledge from the source model without requiring a huge quantity of datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vortex-induced vibration (VIV) is a typical nonlinear fluid-structure
interaction phenomenon, which widely exists in practical engineering (the
flexible riser, the bridge and the aircraft wing, etc). The conventional finite
element model (FEM)-based and data-driven approaches for VIV analysis often
suffer from the challenges of the computational cost and acquisition of
datasets. This paper proposed a transfer learning enhanced the physics-informed
neural network (PINN) model to study the VIV (2D). The physics-informed neural
network, when used in conjunction with the transfer learning method, enhances
learning efficiency and keeps predictability in the target task by common
characteristics knowledge from the source model without requiring a huge
quantity of datasets. The datasets obtained from VIV experiment are divided
evenly two parts (source domain and target domain), to evaluate the performance
of the model. The results show that the proposed method match closely with the
results available in the literature using conventional PINN algorithms even
though the quantity of datasets acquired in training model gradually becomes
smaller. The application of the model can break the limitation of monitoring
equipment and methods in the practical projects, and promote the in-depth study
of VIV.
Related papers
- Efficient Frequency Selective Surface Analysis via End-to-End Model-Based Learning [2.66269503676104]
This paper introduces an innovative end-to-end model-based deep learning approach for efficient electromagnetic analysis of high-dimensional frequency selective surfaces (FSS)
Unlike traditional data-driven methods that require large datasets, this approach combines physical insights from equivalent circuit models with deep learning techniques to significantly reduce model complexity and enhance prediction accuracy.
arXiv Detail & Related papers (2024-10-22T07:27:20Z) - A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects [5.574191640970887]
We present a comparative study of three different methods to predict the free energy change of systems with interacting defects.
Our findings indicate that the cluster expansion model can achieve precise energetics predictions even with this limited dataset.
This research provide a preliminary evaluation of applying machine learning techniques in imperfect surface systems.
arXiv Detail & Related papers (2024-03-20T02:15:48Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.