Isotuning With Applications To Scale-Free Online Learning
- URL: http://arxiv.org/abs/2112.14586v3
- Date: Mon, 21 Oct 2024 16:26:39 GMT
- Title: Isotuning With Applications To Scale-Free Online Learning
- Authors: Laurent Orseau, Marcus Hutter,
- Abstract summary: We extend and combine several tools of the literature to design fast, adaptive, anytime and scale-free online learning algorithms.
Our first and main tool, isotuning, is a generalization of the idea of designing adaptive learning rates that balance the trade-off of the regret.
The second tool is an online correction, which allows us to obtain centered bounds for many algorithms, to prevent the regret bounds from being vacuous.
The last tool, null updates, prevents the algorithm from performing overly large updates, which could result in unbounded regret.
- Score: 19.52475623314373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend and combine several tools of the literature to design fast, adaptive, anytime and scale-free online learning algorithms. Scale-free regret bounds must scale linearly with the maximum loss, both toward large losses and toward very small losses. Adaptive regret bounds demonstrate that an algorithm can take advantage of easy data and potentially have constant regret. We seek to develop fast algorithms that depend on as few parameters as possible, in particular they should be anytime and thus not depend on the time horizon. Our first and main tool, isotuning, is a generalization of the idea of designing adaptive learning rates that balance the trade-off of the regret. We provide a simple and versatile theorem that can be applied to a wide range of settings, and competes with the best balancing in hindsight within a factor 2. The second tool is an online correction, which allows us to obtain centered bounds for many algorithms, to prevent the regret bounds from being vacuous when the domain is overly large or only partially constrained. The last tool, null updates, prevents the algorithm from performing overly large updates, which could result in unbounded regret, or even invalid updates. We develop a general theory to combine all these tools and apply it to several standard algorithms. In particular, we (almost entirely) restore the adaptivity to small losses of FTRL for unbounded domains, design and prove scale-free adaptive guarantees for a variant of Mirror Descent (at least when the Bregman divergence is convex in its second argument), extend Adapt-ML-Prod to scale-free guarantees, and provide several additional contributions about Prod, AdaHedge, BOA and Soft-Bayes.
Related papers
- Improved Impossible Tuning and Lipschitz-Adaptive Universal Online Learning with Gradient Variations [1.9897061813159418]
A central goal in online learning is to achieve adaptivity to unknown problem characteristics.<n>We propose a novel optimistic online mirror descent algorithm with an auxiliary initial round using large learning rates.<n>We develop the first UOL algorithm that simultaneously achieves state-of-the-art GV bounds and LA under standard assumptions.
arXiv Detail & Related papers (2025-05-27T12:22:21Z) - Training Deep Learning Models with Norm-Constrained LMOs [56.00317694850397]
We propose a new family of algorithms that uses the linear minimization oracle (LMO) to adapt to the geometry of the problem.<n>We demonstrate significant speedups on nanoGPT training using our algorithm, Scion, without any reliance on Adam.
arXiv Detail & Related papers (2025-02-11T13:10:34Z) - Outlier-Robust Training of Machine Learning Models [21.352210662488112]
We propose an Adaptive Alternation Algorithm for training machine learning models with outliers.
The algorithm iteratively trains the model by using a weighted version of the non-robust loss, while updating the weights at each.
Considering arbitrary outliers (i.e., with no distributional assumption on the outliers), we show that the use of robust loss kernels sigma increases the region of convergence.
arXiv Detail & Related papers (2024-12-31T04:19:53Z) - Computing Optimal Regularizers for Online Linear Optimization [38.72709491927979]
Follow-the-Regularized-Leader (FTRL) algorithms are a popular class of learning algorithms for online linear optimization (OLO)
We show that there exists an instantiation of FTRL which achieves regret within a constant factor of the best possible learning algorithm.
arXiv Detail & Related papers (2024-10-22T18:10:50Z) - Meta-Learning Adversarial Bandit Algorithms [55.72892209124227]
We study online meta-learning with bandit feedback.
We learn to tune online mirror descent generalization (OMD) with self-concordant barrier regularizers.
arXiv Detail & Related papers (2023-07-05T13:52:10Z) - Riemannian Projection-free Online Learning [5.918057694291832]
The projection operation is a critical component in a range of optimization algorithms, such as online gradient descent (OGD)
It suffers from computational limitations in high-dimensional settings or when dealing with ill-conditioned constraint sets.
This paper presents methods for obtaining sub-linear regret guarantees in online geodesically convex optimization on curved spaces.
arXiv Detail & Related papers (2023-05-30T18:22:09Z) - Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL
with General Regularizers and Multiple Optimal Arms [41.06668954462585]
We study the problem of designing adaptive multi-armed bandit algorithms that optimally perform in both the setting and the adversarial setting simultaneously.
We show that uniqueness is unnecessary for FTRL with a broad family of regularizers and a new learning rate schedule.
arXiv Detail & Related papers (2023-02-27T06:09:10Z) - Improved Online Conformal Prediction via Strongly Adaptive Online
Learning [86.4346936885507]
We develop new online conformal prediction methods that minimize the strongly adaptive regret.
We prove that our methods achieve near-optimal strongly adaptive regret for all interval lengths simultaneously.
Experiments show that our methods consistently obtain better coverage and smaller prediction sets than existing methods on real-world tasks.
arXiv Detail & Related papers (2023-02-15T18:59:30Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Online estimation and control with optimal pathlength regret [52.28457815067461]
A natural goal when designing online learning algorithms is to bound the regret of the algorithm in terms of the temporal variation of the input sequence.
Data-dependent "pathlength" regret bounds have recently been obtained for a wide variety of online learning problems, including OCO and bandits.
arXiv Detail & Related papers (2021-10-24T22:43:15Z) - Universal Online Convex Optimization Meets Second-order Bounds [74.0120666722487]
We propose a simple strategy for universal online convex optimization.
The key idea is to construct a set of experts to process the original online functions, and deploy a meta-algorithm over the linearized losses.
In this way, we can plug in off-the-shelf online solvers as black-box experts to deliver problem-dependent regret bounds.
arXiv Detail & Related papers (2021-05-08T11:43:49Z) - Optimistic and Adaptive Lagrangian Hedging [11.698607733213226]
In online learning an algorithm plays against an environment with losses possibly picked by an adversary at each round.
We introduce optimism and adaptive stepsizes to Lagrangian hedging, a class of online algorithms that includes regret-matching, and hedge.
arXiv Detail & Related papers (2021-01-23T23:32:40Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.