Riemannian Projection-free Online Learning
- URL: http://arxiv.org/abs/2305.19349v2
- Date: Sat, 1 Jun 2024 11:44:11 GMT
- Title: Riemannian Projection-free Online Learning
- Authors: Zihao Hu, Guanghui Wang, Jacob Abernethy,
- Abstract summary: The projection operation is a critical component in a range of optimization algorithms, such as online gradient descent (OGD)
It suffers from computational limitations in high-dimensional settings or when dealing with ill-conditioned constraint sets.
This paper presents methods for obtaining sub-linear regret guarantees in online geodesically convex optimization on curved spaces.
- Score: 5.918057694291832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The projection operation is a critical component in a wide range of optimization algorithms, such as online gradient descent (OGD), for enforcing constraints and achieving optimal regret bounds. However, it suffers from computational complexity limitations in high-dimensional settings or when dealing with ill-conditioned constraint sets. Projection-free algorithms address this issue by replacing the projection oracle with more efficient optimization subroutines. But to date, these methods have been developed primarily in the Euclidean setting, and while there has been growing interest in optimization on Riemannian manifolds, there has been essentially no work in trying to utilize projection-free tools here. An apparent issue is that non-trivial affine functions are generally non-convex in such domains. In this paper, we present methods for obtaining sub-linear regret guarantees in online geodesically convex optimization on curved spaces for two scenarios: when we have access to (a) a separation oracle or (b) a linear optimization oracle. For geodesically convex losses, and when a separation oracle is available, our algorithms achieve $O(T^{1/2}\:)$ and $O(T^{3/4}\;)$ adaptive regret guarantees in the full information setting and the bandit setting, respectively. When a linear optimization oracle is available, we obtain regret rates of $O(T^{3/4}\;)$ for geodesically convex losses and $O(T^{2/3}\; log T )$ for strongly geodesically convex losses.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Second Order Methods for Bandit Optimization and Control [34.51425758864638]
We show that our algorithm achieves optimal (in terms of terms of convex functions that we call $kappa$-2020) regret bounds for a large class of convex functions.
We also investigate the adaptation of our second-order bandit algorithm to online convex optimization with memory.
arXiv Detail & Related papers (2024-02-14T04:03:38Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Projection-free Online Exp-concave Optimization [21.30065439295409]
We present an LOO-based ONS-style algorithm, which using overall $O(T)$ calls to a LOO, guarantees in worst case regret bounded by $widetildeO(n2/3T2/3)$.
Our algorithm is most interesting in an important and plausible low-dimensional data scenario.
arXiv Detail & Related papers (2023-02-09T18:58:05Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Projection-free Adaptive Regret with Membership Oracles [31.422532403048738]
Most iterative algorithms require the computation of projections onto convex sets, which can be computationally expensive.
Recent work by GK22 gave sublinear adaptive regret guarantees with projection free algorithms based on the Frank Wolfe approach.
We give projection-free algorithms that are based on a different technique, inspired by Mhammedi22, that replaces projections by set-membership computations.
arXiv Detail & Related papers (2022-11-22T23:53:06Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Efficient Projection-Free Online Convex Optimization with Membership
Oracle [11.745866777357566]
We present a new reduction that turns any algorithm A defined on a Euclidean ball to an algorithm on a constrained set C contained within the ball.
Our reduction requires O(T log T) calls to a Membership Oracle on C after T rounds, and no linear optimization on C is needed.
arXiv Detail & Related papers (2021-11-10T17:22:29Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits.
We obtain the first algorithm that achieves the optimal $O(dsqrtT + varepsilonsqrtdT)$ regret bound for unknown misspecification level.
arXiv Detail & Related papers (2021-07-12T21:30:41Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
This paper considers convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables.
Online and efficient approaches for solving such problems have not been widely studied.
We propose a novel conservative optimization algorithm (CSOA) that achieves zero constraint violation and $Oleft(T-frac12right)$ optimality gap.
arXiv Detail & Related papers (2020-08-13T08:56:24Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.