Sequential memory improves sample and memory efficiency in Episodic Control
- URL: http://arxiv.org/abs/2112.14734v2
- Date: Thu, 6 Jun 2024 15:50:45 GMT
- Title: Sequential memory improves sample and memory efficiency in Episodic Control
- Authors: Ismael T. Freire, Adrián F. Amil, Paul F. M. J. Verschure,
- Abstract summary: State of the art deep reinforcement learning algorithms are sample inefficient due to the large number of episodes they require to achieve performance.
ERL algorithms, inspired by the mammalian hippocampus, typically use extended memory systems to bootstrap learning from past events to overcome this sample-inefficiency problem.
Here, we demonstrate that including a bias in the acquired memory content derived from the order of episodic sampling improves both the sample and memory efficiency of an episodic control algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: State of the art deep reinforcement learning algorithms are sample inefficient due to the large number of episodes they require to achieve asymptotic performance. Episodic Reinforcement Learning (ERL) algorithms, inspired by the mammalian hippocampus, typically use extended memory systems to bootstrap learning from past events to overcome this sample-inefficiency problem. However, such memory augmentations are often used as mere buffers, from which isolated past experiences are drawn to learn from in an offline fashion (e.g., replay). Here, we demonstrate that including a bias in the acquired memory content derived from the order of episodic sampling improves both the sample and memory efficiency of an episodic control algorithm. We test our Sequential Episodic Control (SEC) model in a foraging task to show that storing and using integrated episodes as event sequences leads to faster learning with fewer memory requirements as opposed to a standard ERL benchmark, Model-Free Episodic Control, that buffers isolated events only. We also study the effect of memory constraints and forgetting on the sequential and non-sequential version of the SEC algorithm. Furthermore, we discuss how a hippocampal-like fast memory system could bootstrap slow cortical and subcortical learning subserving habit formation in the mammalian brain.
Related papers
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning [7.627299398469962]
We introduce TEAL, a novel approach to populate the memory with exemplars.
We show that TEAL improves the average accuracy of the SOTA method XDER as well as ER and ER-ACE on several image recognition benchmarks.
arXiv Detail & Related papers (2024-06-30T12:09:08Z) - Adversarially Diversified Rehearsal Memory (ADRM): Mitigating Memory Overfitting Challenge in Continual Learning [0.0]
Continual learning focuses on learning non-stationary data distribution without forgetting previous knowledge.
Rehearsal-based approaches are commonly used to combat catastrophic forgetting.
We introduce the Adversarially Diversified Rehearsal Memory to address the memory overfitting challenge.
arXiv Detail & Related papers (2024-05-20T06:56:43Z) - Summarizing Stream Data for Memory-Constrained Online Continual Learning [17.40956484727636]
We propose to Summarize the knowledge from the Stream Data (SSD) into more informative samples by distilling the training characteristics of real images.
We demonstrate that with limited extra computational overhead, SSD provides more than 3% accuracy boost for sequential CIFAR-100 under extremely restricted memory buffer.
arXiv Detail & Related papers (2023-05-26T05:31:51Z) - Neural Transducer Training: Reduced Memory Consumption with Sample-wise
Computation [5.355990925686149]
We propose a memory-efficient training method that computes the transducer loss and gradients sample by sample.
We show that our sample-wise method significantly reduces memory usage, and performs at competitive speed when compared to the default batched.
As a highlight, we manage to compute the transducer loss and gradients for a batch size of 1024, and audio length of 40 seconds, using only 6 GB of memory.
arXiv Detail & Related papers (2022-11-29T14:57:23Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Memory-Guided Semantic Learning Network for Temporal Sentence Grounding [55.31041933103645]
We propose a memory-augmented network that learns and memorizes the rarely appeared content in TSG tasks.
MGSL-Net consists of three main parts: a cross-modal inter-action module, a memory augmentation module, and a heterogeneous attention module.
arXiv Detail & Related papers (2022-01-03T02:32:06Z) - Solving Continuous Control with Episodic Memory [1.9493449206135294]
Episodic memory lets reinforcement learning algorithms remember and exploit promising experience from the past to improve agent performance.
Our study aims to answer the question: can episodic memory be used to improve agent's performance in continuous control?
arXiv Detail & Related papers (2021-06-16T14:51:39Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning.
Memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass.
But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally.
We propose the Rehearsal Memory to enhance long-sequence memorization by self-supervised rehearsal with a history sampler.
arXiv Detail & Related papers (2021-06-02T11:58:30Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
We present Stored Embeddings for Efficient Reinforcement Learning (SEER)
SEER is a simple modification of existing off-policy deep reinforcement learning methods.
We show that SEER does not degrade the performance of RLizable agents while significantly saving computation and memory.
arXiv Detail & Related papers (2021-03-04T08:14:10Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.