A Graph Attention Learning Approach to Antenna Tilt Optimization
- URL: http://arxiv.org/abs/2112.14843v1
- Date: Mon, 27 Dec 2021 15:20:53 GMT
- Title: A Graph Attention Learning Approach to Antenna Tilt Optimization
- Authors: Yifei Jin, Filippo Vannella, Maxime Bouton, Jaeseong Jeong and Ezeddin
Al Hakim
- Abstract summary: 6G will move mobile networks towards increasing levels of complexity.
To deal with this complexity, optimization of network parameters is key to ensure high performance and timely adaptivity to dynamic network environments.
We propose a Graph Attention Q-learning (GAQ) algorithm for tilt optimization.
- Score: 1.8024332526232831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 6G will move mobile networks towards increasing levels of complexity. To deal
with this complexity, optimization of network parameters is key to ensure high
performance and timely adaptivity to dynamic network environments. The
optimization of the antenna tilt provides a practical and cost-efficient method
to improve coverage and capacity in the network. Previous methods based on
Reinforcement Learning (RL) have shown great promise for tilt optimization by
learning adaptive policies outperforming traditional tilt optimization methods.
However, most existing RL methods are based on single-cell features
representation, which fails to fully characterize the agent state, resulting in
suboptimal performance. Also, most of such methods lack scalability, due to
state-action explosion, and generalization ability. In this paper, we propose a
Graph Attention Q-learning (GAQ) algorithm for tilt optimization. GAQ relies on
a graph attention mechanism to select relevant neighbors information, improve
the agent state representation, and update the tilt control policy based on a
history of observations using a Deep Q-Network (DQN). We show that GAQ
efficiently captures important network information and outperforms standard DQN
with local information by a large margin. In addition, we demonstrate its
ability to generalize to network deployments of different sizes and densities.
Related papers
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - Large-scale global optimization of ultra-high dimensional non-convex
landscapes based on generative neural networks [0.0]
We present an algorithm manage ultra-high dimensional optimization.
based on a deep generative network.
We show that our method performs better with fewer function evaluations compared to state-of-the-art algorithm.
arXiv Detail & Related papers (2023-07-09T00:05:59Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Transformer Network-based Reinforcement Learning Method for Power
Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM) [4.829921419076774]
We propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM)
The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer seen at multiple ports.
arXiv Detail & Related papers (2022-03-29T16:27:54Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
Controlling antenna tilts in cellular networks is imperative to reach an efficient trade-off between network coverage and capacity.
We devise algorithms learning optimal tilt control policies from existing data.
We show that they can produce optimal tilt update policy using much fewer data samples than naive or existing rule-based learning algorithms.
arXiv Detail & Related papers (2022-01-06T18:24:30Z) - Optimizing Large-Scale Fleet Management on a Road Network using
Multi-Agent Deep Reinforcement Learning with Graph Neural Network [0.8702432681310401]
We propose a novel approach to optimize fleet management by combining multi-agent reinforcement learning with graph neural network.
We design a realistic simulator that emulates the empirical taxi call data, and confirm the effectiveness of the proposed model under various conditions.
arXiv Detail & Related papers (2020-11-12T03:01:37Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.