論文の概要: Soundness in Object-centric Workflow Petri Nets
- arxiv url: http://arxiv.org/abs/2112.14994v1
- Date: Thu, 30 Dec 2021 10:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-04 03:17:03.947283
- Title: Soundness in Object-centric Workflow Petri Nets
- Title(参考訳): オブジェクト中心のワークフローペトリネットの音性
- Authors: Irina A. Lomazova, Alexey A. Mitsyuk, Andrey Rivkin
- Abstract要約: この作品では、そのような形式主義の1つの上に構築し、それに対する健全性の概念を導入する。
ケースオブジェクト間の非決定論的同期を持つネットの場合、音質問題は決定可能であることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently introduced Petri net-based formalisms advocate the importance of
proper representation and management of case objects as well as their
co-evolution. In this work we build on top of one of such formalisms and
introduce the notion of soundness for it. We demonstrate that for nets with
non-deterministic synchronization between case objects, the soundness problem
is decidable.
- Abstract(参考訳): 最近導入されたペトリネットに基づく形式主義は、ケースオブジェクトの適切な表現と管理、およびそれらの共進化の重要性を提唱している。
この作品では、そのような形式主義の1つの上に構築し、それに健全性の概念を導入する。
ケースオブジェクト間の非決定論的同期を持つネットの場合、音質問題は決定可能であることを示す。
関連論文リスト
- Object-Centric Conformance Alignments with Synchronization (Extended Version) [57.76661079749309]
対象中心のペトリネットが一対多の関係を捉える能力と,その同一性に基づいたオブジェクトの比較と同期を行う識別子を持つペトリネットの能力を組み合わせた,新たな形式主義を提案する。
我々は、満足度変調理論(SMT)の符号化に基づく、そのようなネットに対する適合性チェック手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T21:53:32Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
このようなパラダイムを模倣学習でどのように行うべきかを評価する。
本稿では,事前学習コーパスがマルチタスクのデモンストレーションから成り立つ環境について考察する。
逆動力学モデリングはこの設定に適していると主張する。
論文 参考訳(メタデータ) (2023-05-26T14:40:46Z) - Towards Disentangled Speech Representations [65.7834494783044]
本研究では, ASR と TTS の合同モデリングに基づく表現学習タスクを構築する。
本研究は,その部分の音声信号と,その部分の音声信号とをアンタングルする音声表現を学習することを目的とする。
我々は,これらの特性をトレーニング中に強化することにより,WERを平均24.5%向上させることを示す。
論文 参考訳(メタデータ) (2022-08-28T10:03:55Z) - Bootstrapping Concept Formation in Small Neural Networks [2.580765958706854]
まず、概念は閉じた表現として形成され、それらを相互に関連付けることによって統合される、と我々は主張する。
本稿では,現実的な学習ルールを用いて,エージェントが仮想行動を行う環境からのフィードバックのみを受信する,小さなニューラルネットワークを備えたモデルシステム(エージェント)を提案する。
論文 参考訳(メタデータ) (2021-10-26T12:58:27Z) - Image Synthesis via Semantic Composition [74.68191130898805]
本稿では,その意味的レイアウトに基づいて現実的なイメージを合成する新しい手法を提案する。
類似した外観を持つ物体に対して、類似した表現を共有するという仮説が立てられている。
本手法は, 空間的変化と関連表現の両方を生じる, 外観相関による領域間の依存関係を確立する。
論文 参考訳(メタデータ) (2021-09-15T02:26:07Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
本稿では,この予測タスクを自己監督として利用し,画像シーケンス表現のための新しいオブジェクト中心モデルを構築する。
私たちのフレームワークは、手動アノテーションや事前トレーニングされたネットワークを使わずにトレーニングできます。
最初の実験では、提案されたパイプラインがオブジェクト中心のビデオ予測への有望なステップであることを確認した。
論文 参考訳(メタデータ) (2021-03-09T19:14:33Z) - Contextual Interference Reduction by Selective Fine-Tuning of Neural
Networks [1.0152838128195465]
本研究では,不整合前景対象オブジェクト表現の干渉におけるコンテキストの役割について検討する。
私たちはボトムアップとトップダウンの処理パラダイムの恩恵を受けるフレームワークに取り組んでいます。
論文 参考訳(メタデータ) (2020-11-21T20:11:12Z) - Thinking About Causation: A Causal Language with Epistemic Operators [58.720142291102135]
我々はエージェントの状態を表すことで因果モデルの概念を拡張した。
対象言語の側面には、知識を表現する演算子や、新しい情報を観察する行為が追加されます。
我々は、論理の健全かつ完全な公理化を提供し、このフレームワークと因果的チーム意味論との関係について論じる。
論文 参考訳(メタデータ) (2020-10-30T12:16:45Z) - Untangling in Invariant Speech Recognition [17.996356271398295]
我々は、音声を認識するために訓練されたニューラルネットワークの中で、情報を解き放つ方法を研究する。
話者固有のニュアンス変動はネットワーク階層によって排除されるのに対し、タスク関連特性は後続の層で解消される。
計算の各段階におけるタスク関連特徴を効率よく抽出することにより,深部表現が時間的アンハングリングを行うことがわかった。
論文 参考訳(メタデータ) (2020-03-03T20:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。