論文の概要: ChunkFormer: Learning Long Time Series with Multi-stage Chunked
Transformer
- arxiv url: http://arxiv.org/abs/2112.15087v1
- Date: Thu, 30 Dec 2021 15:06:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 13:54:46.660841
- Title: ChunkFormer: Learning Long Time Series with Multi-stage Chunked
Transformer
- Title(参考訳): ChunkFormer: マルチステージChunked Transformerによる時系列学習
- Authors: Yue Ju, Alka Isac and Yimin Nie
- Abstract要約: オリジナルトランスフォーマーベースのモデルは、シーケンスに沿ったグローバル情報を検出するためのアテンションメカニズムを採用している。
ChunkFormerは、長いシーケンスを注意計算のために小さなシーケンスチャンクに分割する。
このようにして、提案モデルは、入力シーケンスの総長を変更することなく、局所情報と大域情報の両方を徐々に学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of long sequence data remains challenging in many real-world
applications. We propose a novel architecture, ChunkFormer, that improves the
existing Transformer framework to handle the challenges while dealing with long
time series. Original Transformer-based models adopt an attention mechanism to
discover global information along a sequence to leverage the contextual data.
Long sequential data traps local information such as seasonality and
fluctuations in short data sequences. In addition, the original Transformer
consumes more resources by carrying the entire attention matrix during the
training course. To overcome these challenges, ChunkFormer splits the long
sequences into smaller sequence chunks for the attention calculation,
progressively applying different chunk sizes in each stage. In this way, the
proposed model gradually learns both local and global information without
changing the total length of the input sequences. We have extensively tested
the effectiveness of this new architecture on different business domains and
have proved the advantage of such a model over the existing Transformer-based
models.
- Abstract(参考訳): 長いシーケンスデータの解析は多くの実世界のアプリケーションで難しいままである。
我々は,既存のトランスフォーマフレームワークを改良し,長時間の時系列処理を行うための新しいアーキテクチャであるchunkformerを提案する。
オリジナルのトランスフォーマーベースのモデルは、コンテキストデータを活用するためにシーケンスに沿ってグローバル情報を検出するための注意機構を採用している。
ロングシーケンシャルデータは、短いデータシーケンスの季節や変動などのローカル情報をトラップする。
さらに、元のトランスフォーマーはトレーニングコース中に注意行列全体を運ぶことでより多くのリソースを消費する。
これらの課題を克服するために、chunkformerは長いシーケンスをより小さなシーケンスチャンクに分割し、注意の計算を行い、各ステージに異なるチャンクサイズを適用する。
このようにして,提案モデルでは,入力列の総長を変更することなく,局所的情報と大域的情報の両方を徐々に学習する。
我々は、この新しいアーキテクチャをさまざまなビジネスドメインで広範囲にテストし、既存のトランスフォーマーベースのモデルよりも、そのようなモデルの利点を証明した。
関連論文リスト
- sTransformer: A Modular Approach for Extracting Inter-Sequential and Temporal Information for Time-Series Forecasting [6.434378359932152]
既存のTransformerベースのモデルを,(1)モデル構造の変更,(2)入力データの変更の2つのタイプに分類する。
我々は、シーケンシャル情報と時間情報の両方をフルにキャプチャするSequence and Temporal Convolutional Network(STCN)を導入する$textbfsTransformer$を提案する。
我々は,線形モデルと既存予測モデルとを長期時系列予測で比較し,新たな成果を得た。
論文 参考訳(メタデータ) (2024-08-19T06:23:41Z) - Rough Transformers: Lightweight Continuous-Time Sequence Modelling with Path Signatures [46.58170057001437]
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
様々な時系列関連タスクにおいて、Rough Transformersはベニラアテンションよりも常に優れています。
論文 参考訳(メタデータ) (2024-05-31T14:00:44Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
時系列予測は、様々な領域における複雑な力学の理解と予測に不可欠である。
GridTSTは、革新的な多方向性の注意を用いた2つのアプローチの利点を組み合わせたモデルである。
このモデルは、さまざまな現実世界のデータセットに対して、常に最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-05-22T16:41:21Z) - Rough Transformers for Continuous and Efficient Time-Series Modelling [46.58170057001437]
実世界の医療環境における時系列データは、典型的には長距離依存を示し、一様でない間隔で観察される。
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
Rough Transformersは、Neural ODEベースのモデルの利点を得ながら、バニラアテンションを一貫して上回ります。
論文 参考訳(メタデータ) (2024-03-15T13:29:45Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
iTransformerを提案する。これは、逆次元に注意とフィードフォワードのネットワークを単純に適用する。
iTransformerモデルは、挑戦的な現実世界のデータセットの最先端を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:44:09Z) - Client: Cross-variable Linear Integrated Enhanced Transformer for
Multivariate Long-Term Time Series Forecasting [4.004869317957185]
クライアント(Client)は,従来のトランスフォーマーベースモデルと線形モデルの両方に勝る高度なモデルである。
クライアントは、従来の線形モデルとTransformerベースのモデルとを分離した、非線形性とクロス変数の依存関係を組み込んでいる。
論文 参考訳(メタデータ) (2023-05-30T08:31:22Z) - Infomaxformer: Maximum Entropy Transformer for Long Time-Series
Forecasting Problem [6.497816402045097]
Transformerアーキテクチャは、自然言語処理(NLP)やコンピュータビジョン(CV)といった多くのタスクにおいて、最先端の結果をもたらす。
しかし、この高度な能力により、二次的な時間複雑性と高いメモリ使用量により、Transformerは長い時系列予測問題に対処できなくなる。
本稿では,エンコーダ・デコーダアーキテクチャと季節差分解を併用して,より特定の季節差部分を取得する手法を提案する。
論文 参考訳(メタデータ) (2023-01-04T14:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。