論文の概要: Rough Transformers for Continuous and Efficient Time-Series Modelling
- arxiv url: http://arxiv.org/abs/2403.10288v1
- Date: Fri, 15 Mar 2024 13:29:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:01:25.309793
- Title: Rough Transformers for Continuous and Efficient Time-Series Modelling
- Title(参考訳): 連続かつ効率的な時系列モデリングのための粗変換器
- Authors: Fernando Moreno-Pino, Álvaro Arroyo, Harrison Waldon, Xiaowen Dong, Álvaro Cartea,
- Abstract要約: 実世界の医療環境における時系列データは、典型的には長距離依存を示し、一様でない間隔で観察される。
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
Rough Transformersは、Neural ODEベースのモデルの利点を得ながら、バニラアテンションを一貫して上回ります。
- 参考スコア(独自算出の注目度): 46.58170057001437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series data in real-world medical settings typically exhibit long-range dependencies and are observed at non-uniform intervals. In such contexts, traditional sequence-based recurrent models struggle. To overcome this, researchers replace recurrent architectures with Neural ODE-based models to model irregularly sampled data and use Transformer-based architectures to account for long-range dependencies. Despite the success of these two approaches, both incur very high computational costs for input sequences of moderate lengths and greater. To mitigate this, we introduce the Rough Transformer, a variation of the Transformer model which operates on continuous-time representations of input sequences and incurs significantly reduced computational costs, critical for addressing long-range dependencies common in medical contexts. In particular, we propose multi-view signature attention, which uses path signatures to augment vanilla attention and to capture both local and global dependencies in input data, while remaining robust to changes in the sequence length and sampling frequency. We find that Rough Transformers consistently outperform their vanilla attention counterparts while obtaining the benefits of Neural ODE-based models using a fraction of the computational time and memory resources on synthetic and real-world time-series tasks.
- Abstract(参考訳): 実世界の医療環境における時系列データは、典型的には長距離依存を示し、一様でない間隔で観察される。
このような文脈では、伝統的なシーケンスベースのリカレントモデルが苦戦する。
これを解決するために、研究者はリカレントアーキテクチャをNeural ODEベースのモデルに置き換え、不規則にサンプリングされたデータをモデル化し、Transformerベースのアーキテクチャを使用して長距離依存関係を考慮している。
これら2つのアプローチの成功にもかかわらず、どちらも適度な長さの入力シーケンスに対して非常に高い計算コストを発生させる。
これを軽減するために,入力シーケンスの連続的な表現を演算し,計算コストを大幅に削減する変換器モデルのバリエーションであるRough Transformerを導入する。
特に,経路シグネチャを用いてバニラアテンションを増大させ,入力データ中の局所的およびグローバル的依存関係を捕捉し,シーケンス長やサンプリング頻度の変化に頑健なままに維持する多視点シグネチャアテンションアテンションを提案する。
Rough Transformersは、合成および実世界の時系列タスクにおいて、計算時間とメモリリソースの一部を使用しながら、Neural ODEベースのモデルの利点を享受しながら、バニラの注意点を一貫して上回ります。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Rough Transformers: Lightweight Continuous-Time Sequence Modelling with Path Signatures [46.58170057001437]
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
様々な時系列関連タスクにおいて、Rough Transformersはベニラアテンションよりも常に優れています。
論文 参考訳(メタデータ) (2024-05-31T14:00:44Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - ContiFormer: Continuous-Time Transformer for Irregular Time Series
Modeling [30.12824131306359]
不規則な時系列上の連続時間ダイナミクスのモデリングは、連続的に発生するデータの進化と相関を考慮するために重要である。
リカレントニューラルネットワークやTransformerモデルを含む従来の方法は、強力なニューラルネットワークを通じて誘導バイアスを利用して複雑なパターンをキャプチャする。
本稿では,バニラ変換器の関係モデリングを連続時間領域に拡張するContiFormerを提案する。
論文 参考訳(メタデータ) (2024-02-16T12:34:38Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Robust representations of oil wells' intervals via sparse attention
mechanism [2.604557228169423]
正規化変換器(Reguformers)と呼ばれる効率的な変換器のクラスを導入する。
私たちの実験の焦点は、石油とガスのデータ、すなわちウェルログにあります。
このような問題に対する我々のモデルを評価するために、20以上の井戸からなるウェルログからなる産業規模のオープンデータセットで作業する。
論文 参考訳(メタデータ) (2022-12-29T09:56:33Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - ChunkFormer: Learning Long Time Series with Multi-stage Chunked
Transformer [0.0]
オリジナルトランスフォーマーベースのモデルは、シーケンスに沿ったグローバル情報を検出するためのアテンションメカニズムを採用している。
ChunkFormerは、長いシーケンスを注意計算のために小さなシーケンスチャンクに分割する。
このようにして、提案モデルは、入力シーケンスの総長を変更することなく、局所情報と大域情報の両方を徐々に学習する。
論文 参考訳(メタデータ) (2021-12-30T15:06:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。