Quantum secure direct communication with private dense coding using
general preshared quantum state
- URL: http://arxiv.org/abs/2112.15113v3
- Date: Mon, 23 May 2022 02:45:46 GMT
- Title: Quantum secure direct communication with private dense coding using
general preshared quantum state
- Authors: Jiawei Wu, Gui-Lu Long, Masahito Hayashi
- Abstract summary: We study secure direct communication by using a general preshared quantum state and a generalization of dense coding.
For a practical application, we propose a concrete protocol and derive an upper bound of information leakage.
- Score: 59.99354397281036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study quantum secure direct communication by using a general preshared
quantum state and a generalization of dense coding. In this scenario, Alice is
allowed to apply a unitary on the preshared state to encode her message, and
the set of allowed unitaries forms a group. To decode the message, Bob is
allowed to apply a measurement across his own system and the system he
receives. In the worst scenario, we guarantee that Eve obtains no information
for the message even when Eve access the joint system between the system that
she intercepts and her original system of the preshared state. For a practical
application, we propose a concrete protocol and derive an upper bound of
information leakage in the finite-length setting. We also discuss how to apply
our scenario to the case with discrete Weyl-Heisenberg representation when the
preshared state is unknown.
Related papers
- Quantum information with quantum-like bits [0.0]
In previous work we have proposed a construction of quantum-like bits that could endow a large, complex classical system.
This paper aims to explore the mathematical structure of quantum-like resources, and shows how arbitrary gates can be implemented by manipulating emergent states.
arXiv Detail & Related papers (2024-08-12T20:40:54Z) - Classical Commitments to Quantum States [5.6739502570965765]
We define the notion of a classical commitment scheme to quantum states.
It allows a quantum prover to compute a classical commitment to a quantum state, and later open each qubit of the state in either the standard or the Hadamard basis.
arXiv Detail & Related papers (2024-04-19T22:31:18Z) - Optimal Second-Order Rates for Quantum Information Decoupling [14.932939960009605]
We consider the standard quantum information decoupling, in which Alice aims to decouple her system from the environment by local operations and discarding some of her systems.
We find an achievability bound in entanglement distillation protocol, where the objective is for Alice and Bob to transform their quantum state to maximally entangled state with largest possible dimension.
arXiv Detail & Related papers (2024-03-21T12:06:30Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Simple Information Processing Tasks with Unbounded Quantum Advantage [0.0]
We show that it is possible to detect a definite, unbounded advantage of quantum systems over classical systems.
No finite storage can be used to store all the coordinated actions needed to implement all the possible quantum communication tasks with classical systems.
arXiv Detail & Related papers (2023-08-15T12:07:31Z) - Almost qudits in the prepare-and-measure scenario [0.0]
We introduce and investigate quantum information encoded in carriers that nearly, but not entirely, correspond to standard qudits.
We show how small higher-dimensional components can significantly compromise the conclusions of established protocols.
We also consider viewing almost qubit systems as a physical resource available to the experimenter.
arXiv Detail & Related papers (2022-08-16T18:00:07Z) - Quantum cryptography with classical communication: parallel remote state
preparation for copy-protection, verification, and more [125.99533416395765]
Many cryptographic primitives are two-party protocols, where one party, Bob, has full quantum computational capabilities, and the other party, Alice, is only required to send random BB84 states to Bob.
We show how such protocols can generically be converted to ones where Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem.
This means that all communication between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic primitives that would be impossible if both parties were classical.
arXiv Detail & Related papers (2022-01-31T18:56:31Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.