Simple Information Processing Tasks with Unbounded Quantum Advantage
- URL: http://arxiv.org/abs/2308.07727v4
- Date: Thu, 18 Apr 2024 11:10:43 GMT
- Title: Simple Information Processing Tasks with Unbounded Quantum Advantage
- Authors: Teiko Heinosaari, Oskari Kerppo, Leevi Leppäjärvi, Martin Plávala,
- Abstract summary: We show that it is possible to detect a definite, unbounded advantage of quantum systems over classical systems.
No finite storage can be used to store all the coordinated actions needed to implement all the possible quantum communication tasks with classical systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Communication scenarios between two parties can be implemented by first encoding messages into some states of a physical system which acts as the physical medium of the communication and then decoding the messages by measuring the state of the system. We show that already in the simplest possible scenarios it is possible to detect a definite, unbounded advantage of quantum systems over classical systems. We do this by constructing a family of operationally meaningful communication tasks each of which on one hand can be implemented by using just a single qubit but which on the other hand require unboundedly larger classical system for classical implementation. Furthemore, we show that even though with the additional resource of shared randomness the proposed communication tasks can be implemented by both quantum and classical systems of the same size, the number of coordinated actions needed for the classical implementation also grows unboundedly. In particular, no finite storage can be used to store all the coordinated actions needed to implement all the possible quantum communication tasks with classical systems. As a consequence, shared randomness cannot be viewed as a free resource.
Related papers
- Quantum information with quantum-like bits [0.0]
We show how arbitrary gates can be implemented by manipulating many-body correlations.
This suggests the possibility of quantum-like information processing on a special class of many-body classical systems.
arXiv Detail & Related papers (2024-08-12T20:40:54Z) - An Operational Framework for Nonclassicality in Quantum Communication Networks [9.312605205492458]
entanglement and quantum communication offer significant advantages in distributed information processing.
We develop an operational framework for realizing these enhancements in resource-constrained quantum networks.
In all cases, we find that entanglement-assisted communication, both classical and quantum, leads to nonclassicality.
arXiv Detail & Related papers (2024-03-05T14:07:37Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Interplays between classical and quantum entanglement-assisted
communication scenarios [0.0]
We show that, in scenarios where entanglement is a free resource, quantum messages are equivalent to classical ones with twice the capacity.
We also prove that, in such scenarios, it is always advantageous for the parties to share entangled states of greater dimension than the transmitted message.
arXiv Detail & Related papers (2022-05-10T21:09:16Z) - Classical analogue of quantum superdense coding and communication advantage of a single quantum system [0.0]
We show that a qubit communication without any assistance of classical shared randomness can achieve the goal.
We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces.
arXiv Detail & Related papers (2022-02-14T15:29:59Z) - Quantum secure direct communication with private dense coding using
general preshared quantum state [59.99354397281036]
We study secure direct communication by using a general preshared quantum state and a generalization of dense coding.
For a practical application, we propose a concrete protocol and derive an upper bound of information leakage.
arXiv Detail & Related papers (2021-12-30T16:12:07Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Genuine quantum networks: superposed tasks and addressing [68.8204255655161]
We show how to make quantum networks, both standard and entanglement-based, genuine quantum.
We provide them with the possibility of handling superposed tasks and superposed addressing.
arXiv Detail & Related papers (2020-04-30T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.