Quantum information with quantum-like bits
- URL: http://arxiv.org/abs/2408.06485v4
- Date: Mon, 11 Nov 2024 20:02:57 GMT
- Title: Quantum information with quantum-like bits
- Authors: Graziano Amati, Gregory D. Scholes,
- Abstract summary: In previous work we have proposed a construction of quantum-like bits that could endow a large, complex classical system.
This paper aims to explore the mathematical structure of quantum-like resources, and shows how arbitrary gates can be implemented by manipulating emergent states.
- Score: 0.0
- License:
- Abstract: In previous work we have proposed a construction of quantum-like bits that could endow a large, complex classical system, for example of oscillators, with quantum-like function that is not compromised by decoherence. In the present paper we investigate further this platform of quantum-like states. Firstly, we discuss a general protocol on how to construct synchronizing networks that allow for emergent states. We then study how gates can be implemented on those states. This suggests the possibility of quantum-like computing on specially-constructed classical networks. Finally, we define a notion of measurement that allows for non-Kolmogorov interference, a feature that separates our model from a classical probabilistic system. This paper aims to explore the mathematical structure of quantum-like resources, and shows how arbitrary gates can be implemented by manipulating emergent states in those systems.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Hidden tensor structures [0.0]
A single quantum mechanical system is automatically equipped with infinitely many hidden tensor-like structures.
These hidden structures are at the roots of some well known theoretical constructions.
The discussed structures explain why it is possible to emulate a quantum computer by classical analog circuit devices.
arXiv Detail & Related papers (2023-08-08T12:08:15Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - A prototype of quantum von Neumann architecture [0.0]
We propose a model of universal quantum computer system, the quantum version of the von Neumann architecture.
It uses ebits as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit.
Our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems.
arXiv Detail & Related papers (2021-12-17T06:33:31Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum systems simulatability through classical networks [0.0]
We have shown that quantum systems on finite-dimensional Hilbert spaces are equivalent under local transformations.
This result can be applied to the field of simulation of quantum systems.
arXiv Detail & Related papers (2021-12-06T15:57:53Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Genuine quantum networks: superposed tasks and addressing [68.8204255655161]
We show how to make quantum networks, both standard and entanglement-based, genuine quantum.
We provide them with the possibility of handling superposed tasks and superposed addressing.
arXiv Detail & Related papers (2020-04-30T18:00:06Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.