論文の概要: Resource-Efficient Deep Learning: A Survey on Model-, Arithmetic-, and
Implementation-Level Techniques
- arxiv url: http://arxiv.org/abs/2112.15131v1
- Date: Thu, 30 Dec 2021 17:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 15:03:31.928807
- Title: Resource-Efficient Deep Learning: A Survey on Model-, Arithmetic-, and
Implementation-Level Techniques
- Title(参考訳): 資源効率のよいディープラーニング:モデル、算術、実装レベル技術に関する調査
- Authors: JunKyu Lee, Lev Mukhanov, Amir Sabbagh Molahosseini, Umar Minhas, Yang
Hua, Jesus Martinez del Rincon, Kiril Dichev, Cheol-Ho Hong, Hans
Vandierendonck
- Abstract要約: ディープラーニングは、自動運転車、バーチャルアシスタント、ソーシャルネットワークサービス、ヘルスケアサービス、顔認識など、私たちの日常生活に広く浸透しています。
深層ニューラルネットワークは、トレーニングと推論の間にかなりの計算資源を必要とする。
本稿では、モデル、算術、実装レベルの技術の観点から、資源効率の高いディープラーニング技術について調査する。
- 参考スコア(独自算出の注目度): 10.715525749057495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is pervasive in our daily life, including self-driving cars,
virtual assistants, social network services, healthcare services, face
recognition, etc. However, deep neural networks demand substantial compute
resources during training and inference. The machine learning community has
mainly focused on model-level optimizations such as architectural compression
of deep learning models, while the system community has focused on
implementation-level optimization. In between, various arithmetic-level
optimization techniques have been proposed in the arithmetic community. This
article provides a survey on resource-efficient deep learning techniques in
terms of model-, arithmetic-, and implementation-level techniques and
identifies the research gaps for resource-efficient deep learning techniques
across the three different level techniques. Our survey clarifies the influence
from higher to lower-level techniques based on our resource-efficiency metric
definition and discusses the future trend for resource-efficient deep learning
research.
- Abstract(参考訳): ディープラーニングは、自動運転車、バーチャルアシスタント、ソーシャルネットワークサービス、ヘルスケアサービス、顔認識など、私たちの日常生活に広く浸透しています。
しかし、ディープニューラルネットワークはトレーニングと推論の間にかなりの計算リソースを要求する。
機械学習コミュニティは主にディープラーニングモデルのアーキテクチャ圧縮のようなモデルレベルの最適化に重点を置いており、システムコミュニティは実装レベルの最適化に重点を置いている。
この間に算術レベルの最適化技術が算術コミュニティで提案されている。
本稿では, モデル, 算術, 実装レベル技術の観点から資源効率の高いディープラーニング技術に関する調査を行い, 資源効率の高いディープラーニング技術の研究ギャップを3つの異なるレベル技術で確認する。
本調査は,資源効率メトリック定義に基づく高レベルから低レベルの手法の影響を明らかにし,資源効率深層学習研究の今後の動向について考察する。
関連論文リスト
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models [33.50873478562128]
LLM(Large Language Models)は、計算、メモリ、エネルギー、金融資源の高消費に課題をもたらす。
本調査は, LLMの資源効率向上を目的とした多種多様な手法を概観することにより, これらの課題を体系的に解決することを目的としている。
論文 参考訳(メタデータ) (2024-01-01T01:12:42Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Deep Active Learning with Structured Neural Depth Search [18.180995603975422]
Active-iNASは、複数のモデルを訓練し、各アクティブラーニングサイクルの後に、その後のサンプルをクエリする最適な一般化性能でモデルを選択する。
本稿では,SVI(Structured Variational Inference)あるいはSNDS(Structured Neural Deep Search)と呼ばれる手法を用いた新しいアクティブ戦略を提案する。
同時に、理論上は、平均場推定に基づく現在のVIベースの手法が性能を低下させる可能性があることを実証している。
論文 参考訳(メタデータ) (2023-06-05T12:00:12Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
ディープラーニングの分野は特にコンピュータビジョン(CV)、自然言語処理(NLP)、音声などにおいて大きな進歩を遂げている。
大量のデータに基づいてトレーニングされた大規模なモデルを使用することは、実用的なアプリケーションにとって大きな可能性を秘めている。
計算能力の需要が増大する中で、ディープラーニングモデルの訓練の加速技術に関する包括的な要約が期待されている。
論文 参考訳(メタデータ) (2023-04-07T11:13:23Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Hyper-Parameter Optimization: A Review of Algorithms and Applications [14.524227656147968]
本稿では,自動ハイパーパラメータ最適化(HPO)における最も重要なトピックについて概説する。
この研究は主要な最適化アルゴリズムとその適用性に焦点を当て、特にディープラーニングネットワークの効率と精度をカバーしている。
本稿では,HPOをディープラーニングに適用する際の問題点,最適化アルゴリズムの比較,および限られた計算資源を用いたモデル評価における顕著なアプローチについて述べる。
論文 参考訳(メタデータ) (2020-03-12T10:12:22Z) - Resource-Efficient Neural Networks for Embedded Systems [23.532396005466627]
本稿では,機械学習技術の現状について概説する。
私たちは、過去10年で主要な機械学習モデルであるディープニューラルネットワーク(DNN)に基づく、リソース効率の高い推論に焦点を当てています。
我々は、圧縮技術を用いて、よく知られたベンチマークデータセットの実験で議論を裏付ける。
論文 参考訳(メタデータ) (2020-01-07T14:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。