論文の概要: Spiking Neural Networks Hardware Implementations and Challenges: a
Survey
- arxiv url: http://arxiv.org/abs/2005.01467v1
- Date: Mon, 4 May 2020 13:24:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 00:03:17.155444
- Title: Spiking Neural Networks Hardware Implementations and Challenges: a
Survey
- Title(参考訳): ニューラルネットワークのスパイキング ハードウェア実装と課題:サーベイ
- Authors: Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Fran\c{c}ois
Rummens, Marina Reyboz, Elisa Vianello, Edith Beign\'e
- Abstract要約: スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
- 参考スコア(独自算出の注目度): 53.429871539789445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing is henceforth a major research field for both academic
and industrial actors. As opposed to Von Neumann machines, brain-inspired
processors aim at bringing closer the memory and the computational elements to
efficiently evaluate machine-learning algorithms. Recently, Spiking Neural
Networks, a generation of cognitive algorithms employing computational
primitives mimicking neuron and synapse operational principles, have become an
important part of deep learning. They are expected to improve the computational
performance and efficiency of neural networks, but are best suited for hardware
able to support their temporal dynamics. In this survey, we present the state
of the art of hardware implementations of spiking neural networks and the
current trends in algorithm elaboration from model selection to training
mechanisms. The scope of existing solutions is extensive; we thus present the
general framework and study on a case-by-case basis the relevant
particularities. We describe the strategies employed to leverage the
characteristics of these event-driven algorithms at the hardware level and
discuss their related advantages and challenges.
- Abstract(参考訳): それゆえ、ニューロモルフィックコンピューティングは学術的・産業的な双方にとって大きな研究分野である。
Von Neumannマシンとは対照的に、ブレインインインスパイアされたプロセッサは、機械学習アルゴリズムを効率的に評価するために、メモリと計算要素をより近づけることを目指している。
近年,ニューラルネットワークとシナプス操作原理を模倣する計算プリミティブを用いた認知アルゴリズムであるSpking Neural Networksが,ディープラーニングの重要な部分となっている。
ニューラルネットワークの計算性能と効率を改善することが期待されているが、ハードウェアが時間的ダイナミクスをサポートするのに最適である。
本稿では,スパイキングニューラルネットワークのハードウェア実装の現状と,モデル選択からトレーニング機構に至るまでのアルゴリズム解明の動向について述べる。
既存のソリューションの範囲は広いので、一般的な枠組みを示し、関連する特異性についてケースバイケースで検討する。
本稿では、これらのイベント駆動アルゴリズムの特徴をハードウェアレベルで活用するための戦略について述べ、関連する利点と課題について論じる。
関連論文リスト
- Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
ニューラルネットワークの適応学習能力にアルゴリズムの構造的および規則に基づく推論を統合することを目的としている。
この論文は、この領域の研究に理論的および実践的な貢献を提供する。
論文 参考訳(メタデータ) (2024-02-21T12:16:51Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
スパイクニューラルネットワークは、脳に似たコンピューティングを実現する人工知能のコアの1つである。
本稿では,5つのニューロンモデルの強み,弱さ,適用性について要約し,5つのネットワークトポロジの特徴を解析する。
論文 参考訳(メタデータ) (2023-09-08T16:41:08Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Brain-Inspired Learning on Neuromorphic Substrates [5.279475826661643]
本稿では、ニューロモルフィック基板のための実用的なオンライン学習アルゴリズムの設計のための数学的枠組みを提供する。
具体的には、リアルタイムリカレントラーニング(RTRL)と、スパイキングニューラルネットワーク(SNN)をトレーニングするための生物学的に妥当な学習規則との直接的な関連を示す。
我々はブロック対角ジャコビアンに基づくスパース近似を動機付け、アルゴリズムの計算複雑性を低減する。
論文 参考訳(メタデータ) (2020-10-22T17:56:59Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
機械学習は、特にディープラーニングの形で、人工知能の最近の基本的な発展のほとんどを駆動している。
ディープラーニングは、オブジェクト/パターン認識、音声と自然言語処理、自動運転車、インテリジェントな自己診断ツール、自律ロボット、知識に富んだパーソナルアシスタント、監視といった分野に成功している。
本稿では、電力効率の高いインメモリコンピューティング、ディープラーニングアクセラレーター、スパイクニューラルネットワークの実装のための潜在的なソリューションとして、CMOSハードウェア技術、memristorsを超越した小説をレビューする。
論文 参考訳(メタデータ) (2020-04-30T16:49:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。