Machine Learning Application Development: Practitioners' Insights
- URL: http://arxiv.org/abs/2112.15277v1
- Date: Fri, 31 Dec 2021 03:38:37 GMT
- Title: Machine Learning Application Development: Practitioners' Insights
- Authors: Md Saidur Rahman, Foutse Khomh, Alaleh Hamidi, Jinghui Cheng, Giuliano
Antoniol and Hironori Washizaki
- Abstract summary: We report about a survey that aimed to understand the challenges and best practices of ML application development.
We synthesize the results obtained from 80 practitioners into 17 findings; outlining challenges and best practices for ML application development.
We hope that the reported challenges will inform the research community about topics that need to be investigated to improve the engineering process and the quality of ML-based applications.
- Score: 18.114724750441724
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays, intelligent systems and services are getting increasingly popular
as they provide data-driven solutions to diverse real-world problems, thanks to
recent breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML).
However, machine learning meets software engineering not only with promising
potentials but also with some inherent challenges. Despite some recent research
efforts, we still do not have a clear understanding of the challenges of
developing ML-based applications and the current industry practices. Moreover,
it is unclear where software engineering researchers should focus their efforts
to better support ML application developers. In this paper, we report about a
survey that aimed to understand the challenges and best practices of ML
application development. We synthesize the results obtained from 80
practitioners (with diverse skills, experience, and application domains) into
17 findings; outlining challenges and best practices for ML application
development. Practitioners involved in the development of ML-based software
systems can leverage the summarized best practices to improve the quality of
their system. We hope that the reported challenges will inform the research
community about topics that need to be investigated to improve the engineering
process and the quality of ML-based applications.
Related papers
- Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPT series learns from and simulating real-world code submission activities.
Lingma SWE-GPT 72B resolves 30.20% of GitHub issues, marking a significant improvement in automatic issue resolution.
arXiv Detail & Related papers (2024-11-01T14:27:16Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - Naming the Pain in Machine Learning-Enabled Systems Engineering [8.092979562919878]
Machine learning (ML)-enabled systems are being increasingly adopted by companies.
This paper aims to deliver a comprehensive overview of the current status quo of engineering ML-enabled systems.
arXiv Detail & Related papers (2024-05-20T06:59:20Z) - Achieving Guidance in Applied Machine Learning through Software
Engineering Techniques [0.0]
We look at the (lack of) guidance that currently used development environments and ML APIs provide to developers of ML applications.
We show that current ML tools fall short of fulfilling some basic software engineering gold standards.
Our findings point out ample opportunities for research on ML-specific software engineering.
arXiv Detail & Related papers (2022-03-29T12:54:57Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
Machine learning (ML) is being applied to a diverse and ever-growing set of domains.
In many cases, domain experts -- who often have no expertise in ML or data science -- are asked to use ML predictions to make high-stakes decisions.
We investigate the ML usability challenges present in the domain of child welfare screening through a series of collaborations with child welfare screeners.
arXiv Detail & Related papers (2021-03-02T22:50:45Z) - Machine Learning Model Development from a Software Engineering
Perspective: A Systematic Literature Review [0.0]
Data scientists often develop machine learning models to solve a variety of problems in the industry and academy.
This paper is an effort to investigate the challenges and practices that emerge during the development of ML models from the software engineering perspective.
arXiv Detail & Related papers (2021-02-15T14:25:13Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Software engineering for artificial intelligence and machine learning
software: A systematic literature review [6.681725960709127]
This study aims to investigate how software engineering has been applied in the development of AI/ML systems.
Main challenges faced by professionals are in areas of testing, AI software quality, and data management.
arXiv Detail & Related papers (2020-11-07T11:06:28Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.