Naming the Pain in Machine Learning-Enabled Systems Engineering
- URL: http://arxiv.org/abs/2406.04359v1
- Date: Mon, 20 May 2024 06:59:20 GMT
- Title: Naming the Pain in Machine Learning-Enabled Systems Engineering
- Authors: Marcos Kalinowski, Daniel Mendez, Görkem Giray, Antonio Pedro Santos Alves, Kelly Azevedo, Tatiana Escovedo, Hugo Villamizar, Helio Lopes, Teresa Baldassarre, Stefan Wagner, Stefan Biffl, Jürgen Musil, Michael Felderer, Niklas Lavesson, Tony Gorschek,
- Abstract summary: Machine learning (ML)-enabled systems are being increasingly adopted by companies.
This paper aims to deliver a comprehensive overview of the current status quo of engineering ML-enabled systems.
- Score: 8.092979562919878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: Machine learning (ML)-enabled systems are being increasingly adopted by companies aiming to enhance their products and operational processes. Objective: This paper aims to deliver a comprehensive overview of the current status quo of engineering ML-enabled systems and lay the foundation to steer practically relevant and problem-driven academic research. Method: We conducted an international survey to collect insights from practitioners on the current practices and problems in engineering ML-enabled systems. We received 188 complete responses from 25 countries. We conducted quantitative statistical analyses on contemporary practices using bootstrapping with confidence intervals and qualitative analyses on the reported problems using open and axial coding procedures. Results: Our survey results reinforce and extend existing empirical evidence on engineering ML-enabled systems, providing additional insights into typical ML-enabled systems project contexts, the perceived relevance and complexity of ML life cycle phases, and current practices related to problem understanding, model deployment, and model monitoring. Furthermore, the qualitative analysis provides a detailed map of the problems practitioners face within each ML life cycle phase and the problems causing overall project failure. Conclusions: The results contribute to a better understanding of the status quo and problems in practical environments. We advocate for the further adaptation and dissemination of software engineering practices to enhance the engineering of ML-enabled systems.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - ML-Enabled Systems Model Deployment and Monitoring: Status Quo and
Problems [7.280443300122617]
We conducted an international survey to gather practitioner insights on how ML-enabled systems are engineered.
We analyzed the status quo and problems reported for the model deployment and monitoring phases.
Our results help provide a better understanding of the adopted practices and problems in practice.
arXiv Detail & Related papers (2024-02-08T00:25:30Z) - Status Quo and Problems of Requirements Engineering for Machine
Learning: Results from an International Survey [7.164324501049983]
Requirements Engineering (RE) can help address many problems when engineering Machine Learning-enabled systems.
We conducted a survey to gather practitioner insights into the status quo and problems of RE in ML-enabled systems.
We found significant differences in RE practices within ML projects.
arXiv Detail & Related papers (2023-10-10T15:53:50Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - A Software Engineering Perspective on Engineering Machine Learning
Systems: State of the Art and Challenges [0.0]
Advancements in machine learning (ML) lead to a shift from the traditional view of software development, where algorithms are hard-coded by humans, to ML systems materialized through learning from data.
We need to revisit our ways of developing software systems and consider the particularities required by these new types of systems.
arXiv Detail & Related papers (2020-12-14T20:06:31Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Engineering AI Systems: A Research Agenda [9.84673609667263]
We provide a conceptualization of the typical evolution patterns that companies experience when employing machine learning.
The main contribution of the paper is a research agenda for AI engineering that provides an overview of the key engineering challenges surrounding ML solutions.
arXiv Detail & Related papers (2020-01-16T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.