論文の概要: Conditional Generative Data-Free Knowledge Distillation based on
Attention Transfer
- arxiv url: http://arxiv.org/abs/2112.15358v1
- Date: Fri, 31 Dec 2021 09:23:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 20:12:51.032476
- Title: Conditional Generative Data-Free Knowledge Distillation based on
Attention Transfer
- Title(参考訳): 注意伝達に基づく条件付き生成データフリー知識蒸留
- Authors: Xinyi YU and Ling Yan and Linlin Ou
- Abstract要約: 実データを必要としない効率的な携帯ネットワークを訓練するための条件付き生成データフリー知識蒸留(CGDD)フレームワークを提案する。
本フレームワークでは,教師モデルから抽出した知識を除き,事前設定ラベルを付加的な補助情報として導入する。
CIFAR10, CIFAR100, Caltech101では, 99.63%, 99.07%, 99.84%の相対精度が得られた。
- 参考スコア(独自算出の注目度): 0.8594140167290099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation has made remarkable achievements in model compression.
However, most existing methods demand original training data, while real data
in practice are often unavailable due to privacy, security and transmission
limitation. To address this problem, we propose a conditional generative
data-free knowledge distillation (CGDD) framework to train efficient portable
network without any real data. In this framework, except using the knowledge
extracted from teacher model, we introduce preset labels as additional
auxiliary information to train the generator. Then, the trained generator can
produce meaningful training samples of specified category as required. In order
to promote distillation process, except using conventional distillation loss,
we treat preset label as ground truth label so that student network is directly
supervised by the category of synthetic training sample. Moreover, we force
student network to mimic the attention maps of teacher model and further
improve its performance. To verify the superiority of our method, we design a
new evaluation metric is called as relative accuracy to directly compare the
effectiveness of different distillation methods. Trained portable network
learned with proposed data-free distillation method obtains 99.63%, 99.07% and
99.84% relative accuracy on CIFAR10, CIFAR100 and Caltech101, respectively. The
experimental results demonstrate the superiority of proposed method.
- Abstract(参考訳): 知識蒸留はモデル圧縮において顕著な成果を上げている。
しかし、既存のほとんどの方法は独自のトレーニングデータを必要とするが、実際のデータはしばしばプライバシー、セキュリティ、送信制限のために利用できない。
本稿では,実データ無しで効率的な携帯ネットワークを訓練するための条件付き生成型データフリー知識蒸留(cgdd)フレームワークを提案する。
本フレームワークでは,教師モデルから抽出した知識以外に,事前設定ラベルを付加的な補助情報として導入し,ジェネレータを訓練する。
そして、訓練されたジェネレータは、所定のカテゴリの有意義なトレーニングサンプルを必要に応じて生成することができる。
従来の蒸留損失以外の蒸留プロセスを促進するため, プレセットラベルを地上の真理ラベルとして扱うことにより, 学生ネットワークを合成トレーニングサンプルのカテゴリで直接管理する。
さらに,教師モデルの注意マップの模倣を学生ネットワークに強制し,その性能をさらに向上させる。
本手法の優位性を検証するため, 異なる蒸留法の有効性を直接比較するため, 新しい評価基準を相対的精度として設計する。
CIFAR10、CIFAR100、Caltech101では99.63%、99.07%、99.84%の相対精度が得られた。
実験により提案手法の優位性を示した。
関連論文リスト
- Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation [61.03530321578825]
Score Identity Distillation (SiD) は、事前学習した拡散モデルの生成能力を1ステップ生成器に蒸留する革新的なデータフリー手法である。
SiDは、蒸留中のFr'echet開始距離(FID)を指数的に高速に減少させるだけでなく、元の教師拡散モデルのFID性能に近づいたり、超えたりする。
論文 参考訳(メタデータ) (2024-04-05T12:30:19Z) - Explicit and Implicit Knowledge Distillation via Unlabeled Data [5.702176304876537]
高速な計算機生成装置を代替する効率的な未ラベルサンプル選択法を提案する。
また,データ領域シフトによるラベルノイズを抑制するためのクラスドロップ機構を提案する。
実験結果から,本手法が他の最先端手法よりも高速に収束し,精度が向上できることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:10:41Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - Parameter-Efficient and Student-Friendly Knowledge Distillation [83.56365548607863]
本稿では, PESF-KDというパラメータ効率と学生に優しい知識蒸留法を提案し, 効率的かつ十分な知識伝達を実現する。
各種ベンチマーク実験により,PESF-KDは,高度オンライン蒸留法と比較して,競争力のある結果を得ながら,トレーニングコストを大幅に削減できることが示された。
論文 参考訳(メタデータ) (2022-05-28T16:11:49Z) - Unified and Effective Ensemble Knowledge Distillation [92.67156911466397]
知識蒸留は、複数の教師モデルから知識を抽出し、それを1人の学生モデルにエンコードする。
既存の多くの手法は、ラベル付きデータのみに基づいて学生モデルを学習し、蒸留する。
本研究では,教師モデルのアンサンブルから,ラベル付きデータとラベルなしデータの両方から単一学生モデルを蒸留する,統一的で効果的なアンサンブル知識蒸留法を提案する。
論文 参考訳(メタデータ) (2022-04-01T16:15:39Z) - Robust and Resource-Efficient Data-Free Knowledge Distillation by Generative Pseudo Replay [5.3330804968579795]
データ自由知識蒸留(Data-Free Knowledge Distillation, KD)は、トレーニングされたニューラルネットワーク(教師)から、元のトレーニングデータがない場合にはよりコンパクトなニューラルネットワーク(学生)への知識伝達を可能にする。
既存の作業では、実際のデータよりも生徒の精度を監視し、プロセス全体を通して最高のパフォーマンスを報告するための検証セットが使用されている。
しかし、蒸留時にも検証データが入手できないため、ピーク精度を達成した生徒のスナップショットを記録することは不可能である。
これは、学生が合成データの分布シフトによって知識劣化を経験するからである。
これまでに観測された合成試料の分布をモデル化する。
論文 参考訳(メタデータ) (2022-01-09T14:14:28Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - Dual Discriminator Adversarial Distillation for Data-free Model
Compression [36.49964835173507]
我々は、トレーニングデータやメタデータを使わずにニューラルネットワークを蒸留するために、Dual Discriminator Adversarial Distillation (DDAD)を提案する。
具体的には, 生成器を用いて, 元のトレーニングデータを模倣した二重判別器の対数蒸留法を用いてサンプルを作成する。
提案手法は,教師のネットワークを近い距離で近似する効率的な学生ネットワークである。
論文 参考訳(メタデータ) (2021-04-12T12:01:45Z) - Enhancing Data-Free Adversarial Distillation with Activation
Regularization and Virtual Interpolation [19.778192371420793]
データフリーの逆蒸留フレームワークは生成ネットワークを展開し、教師モデルの知識を生徒モデルに転送する。
データ生成効率を向上させるために、アクティベーションレギュラライザと仮想敵対法を追加します。
CIFAR-100の最先端データフリー手法よりも精度が13.8%高い。
論文 参考訳(メタデータ) (2021-02-23T11:37:40Z) - Computation-Efficient Knowledge Distillation via Uncertainty-Aware Mixup [91.1317510066954]
我々は, 知識蒸留効率という, ささやかだが重要な質問について研究する。
我々のゴールは、訓練中に計算コストの低い従来の知識蒸留に匹敵する性能を達成することである。
我々は,Uncertainty-aware mIXup (UNIX) がクリーンで効果的なソリューションであることを示す。
論文 参考訳(メタデータ) (2020-12-17T06:52:16Z) - Large-Scale Generative Data-Free Distillation [17.510996270055184]
本質的な正規化層の統計を利用して生成画像モデルを訓練する新しい方法を提案する。
提案手法は, CIFAR-10とCIFAR-100のデータフリー蒸留性能を95.02%, 77.02%に向上させる。
ImageNetデータセットにスケールすることができますが、私たちの知る限り、データフリー環境で生成モデルを使用することは一度もありません。
論文 参考訳(メタデータ) (2020-12-10T10:54:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。