論文の概要: Robust and Resource-Efficient Data-Free Knowledge Distillation by Generative Pseudo Replay
- arxiv url: http://arxiv.org/abs/2201.03019v3
- Date: Mon, 29 Jul 2024 13:57:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 01:36:13.102869
- Title: Robust and Resource-Efficient Data-Free Knowledge Distillation by Generative Pseudo Replay
- Title(参考訳): 生成擬似リプレイによるロバストかつ資源効率のよいデータフリー知識蒸留
- Authors: Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham, Karianto Leman, Tulika Mitra,
- Abstract要約: データ自由知識蒸留(Data-Free Knowledge Distillation, KD)は、トレーニングされたニューラルネットワーク(教師)から、元のトレーニングデータがない場合にはよりコンパクトなニューラルネットワーク(学生)への知識伝達を可能にする。
既存の作業では、実際のデータよりも生徒の精度を監視し、プロセス全体を通して最高のパフォーマンスを報告するための検証セットが使用されている。
しかし、蒸留時にも検証データが入手できないため、ピーク精度を達成した生徒のスナップショットを記録することは不可能である。
これは、学生が合成データの分布シフトによって知識劣化を経験するからである。
これまでに観測された合成試料の分布をモデル化する。
- 参考スコア(独自算出の注目度): 5.3330804968579795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-Free Knowledge Distillation (KD) allows knowledge transfer from a trained neural network (teacher) to a more compact one (student) in the absence of original training data. Existing works use a validation set to monitor the accuracy of the student over real data and report the highest performance throughout the entire process. However, validation data may not be available at distillation time either, making it infeasible to record the student snapshot that achieved the peak accuracy. Therefore, a practical data-free KD method should be robust and ideally provide monotonically increasing student accuracy during distillation. This is challenging because the student experiences knowledge degradation due to the distribution shift of the synthetic data. A straightforward approach to overcome this issue is to store and rehearse the generated samples periodically, which increases the memory footprint and creates privacy concerns. We propose to model the distribution of the previously observed synthetic samples with a generative network. In particular, we design a Variational Autoencoder (VAE) with a training objective that is customized to learn the synthetic data representations optimally. The student is rehearsed by the generative pseudo replay technique, with samples produced by the VAE. Hence knowledge degradation can be prevented without storing any samples. Experiments on image classification benchmarks show that our method optimizes the expected value of the distilled model accuracy while eliminating the large memory overhead incurred by the sample-storing methods.
- Abstract(参考訳): データ自由知識蒸留(Data-Free Knowledge Distillation, KD)は、トレーニングされたニューラルネットワーク(教師)から、元のトレーニングデータがない場合にはよりコンパクトなニューラルネットワーク(学生)への知識伝達を可能にする。
既存の作業では、実際のデータよりも生徒の精度を監視し、プロセス全体を通して最高のパフォーマンスを報告するための検証セットが使用されている。
しかし、蒸留時にも検証データが入手できないため、ピーク精度を達成した生徒のスナップショットを記録することは不可能である。
したがって, 実効的なデータフリーKD法は, 蒸留時に単調に生徒の精度を向上させるのが理想である。
これは、学生が合成データの分布シフトによって知識劣化を経験するからである。
この問題を解決するための簡単なアプローチは、生成されたサンプルを定期的に保存しリハーサルすることで、メモリフットプリントが増加し、プライバシの懸念が生まれます。
本稿では,これまでに観測された合成試料の分布を生成ネットワークでモデル化する。
特に、合成データ表現を最適に学習するためにカスタマイズされた訓練目的を持つ変分オートコーダ(VAE)を設計する。
学生は、VAEが作成したサンプルとともに、生成的擬似リプレイ技術によってリハーサルされる。
したがって、サンプルを保存することなく知識劣化を防止することができる。
画像分類ベンチマーク実験により,本手法は,試料保存法により発生する大きなメモリオーバーヘッドを排除しつつ,蒸留モデル精度の期待値を最適化することを示した。
関連論文リスト
- Small Scale Data-Free Knowledge Distillation [37.708282211941416]
小型データフリーな知識蒸留SSD-KDを提案する。
SSD-KDは、適切なサンプルを選択するために、合成サンプルと優先サンプリング関数のバランスをとる。
非常に少量の合成サンプルで蒸留訓練を行うことができる。
論文 参考訳(メタデータ) (2024-06-12T05:09:41Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - Prompting to Distill: Boosting Data-Free Knowledge Distillation via
Reinforced Prompt [52.6946016535059]
データフリー知識蒸留(DFKD)は、元のトレーニングデータの依存をなくし、知識蒸留を行う。
本稿では,PmptDFD(PromptDFD)と呼ばれるプロンプトベースの手法を提案する。
本実験で示すように, 本手法は, 合成品質を大幅に向上し, 蒸留性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-05-16T08:56:53Z) - Conditional Generative Data-Free Knowledge Distillation based on
Attention Transfer [0.8594140167290099]
実データを必要としない効率的な携帯ネットワークを訓練するための条件付き生成データフリー知識蒸留(CGDD)フレームワークを提案する。
本フレームワークでは,教師モデルから抽出した知識を除き,事前設定ラベルを付加的な補助情報として導入する。
CIFAR10, CIFAR100, Caltech101では, 99.63%, 99.07%, 99.84%の相対精度が得られた。
論文 参考訳(メタデータ) (2021-12-31T09:23:40Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - Preventing Catastrophic Forgetting and Distribution Mismatch in
Knowledge Distillation via Synthetic Data [5.064036314529226]
本稿では,データフリーなKDフレームワークを提案する。
実験により,KDを用いて得られた学生モデルの精度を,最先端の手法と比較して向上できることが実証された。
論文 参考訳(メタデータ) (2021-08-11T08:11:08Z) - Dual Discriminator Adversarial Distillation for Data-free Model
Compression [36.49964835173507]
我々は、トレーニングデータやメタデータを使わずにニューラルネットワークを蒸留するために、Dual Discriminator Adversarial Distillation (DDAD)を提案する。
具体的には, 生成器を用いて, 元のトレーニングデータを模倣した二重判別器の対数蒸留法を用いてサンプルを作成する。
提案手法は,教師のネットワークを近い距離で近似する効率的な学生ネットワークである。
論文 参考訳(メタデータ) (2021-04-12T12:01:45Z) - Enhancing Data-Free Adversarial Distillation with Activation
Regularization and Virtual Interpolation [19.778192371420793]
データフリーの逆蒸留フレームワークは生成ネットワークを展開し、教師モデルの知識を生徒モデルに転送する。
データ生成効率を向上させるために、アクティベーションレギュラライザと仮想敵対法を追加します。
CIFAR-100の最先端データフリー手法よりも精度が13.8%高い。
論文 参考訳(メタデータ) (2021-02-23T11:37:40Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。