PiFeNet: Pillar-Feature Network for Real-Time 3D Pedestrian Detection
from Point Cloud
- URL: http://arxiv.org/abs/2112.15458v1
- Date: Fri, 31 Dec 2021 13:41:37 GMT
- Title: PiFeNet: Pillar-Feature Network for Real-Time 3D Pedestrian Detection
from Point Cloud
- Authors: Duy-Tho Le, Hengcan Shi, Hamid Rezatofighi, Jianfei Cai
- Abstract summary: We present PiFeNet, an efficient real-time 3D detector for pedestrian detection from point clouds.
We address two challenges that 3D object detection frameworks encounter when detecting pedestrians: low of pillar features and small occupation areas of pedestrians in point clouds.
Our approach is ranked 1st in KITTI pedestrian BEV and 3D leaderboards while running at 26 frames per second (FPS), and achieves state-of-the-art performance on Nuscenes detection benchmark.
- Score: 64.12626752721766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present PiFeNet, an efficient and accurate real-time 3D detector for
pedestrian detection from point clouds. We address two challenges that 3D
object detection frameworks encounter when detecting pedestrians: low
expressiveness of pillar features and small occupation areas of pedestrians in
point clouds. Firstly, we introduce a stackable Pillar Aware Attention (PAA)
module for enhanced pillar features extraction while suppressing noises in the
point clouds. By integrating multi-point-aware-pooling, point-wise,
channel-wise, and task-aware attention into a simple module, the representation
capabilities are boosted while requiring little additional computing resources.
We also present Mini-BiFPN, a small yet effective feature network that creates
bidirectional information flow and multi-level cross-scale feature fusion to
better integrate multi-resolution features. Our approach is ranked 1st in KITTI
pedestrian BEV and 3D leaderboards while running at 26 frames per second (FPS),
and achieves state-of-the-art performance on Nuscenes detection benchmark.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud [7.711666704468952]
We address the problem of traversability assessment using point clouds.
We propose a pillar feature extraction module that utilizes PointNet to capture features from point clouds organized in vertical volume.
We then propose a newtemporal attention module to fuse multi-frame information, which can properly handle the varying density problem of LIDAR point clouds.
arXiv Detail & Related papers (2024-06-24T12:01:55Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the
Edge [11.588467580653608]
3D object detection plays a pivotal role in many applications, most notably autonomous driving and robotics.
With limited computation power, it is challenging to execute 3D detection on the edge using highly complex neural networks.
Common approaches such as offloading to the cloud induce significant latency overheads due to the large amount of point cloud data during transmission.
We present Moby, a novel system that demonstrates the feasibility and potential of our approach.
arXiv Detail & Related papers (2023-02-18T03:42:31Z) - FastPillars: A Deployment-friendly Pillar-based 3D Detector [63.0697065653061]
Existing BEV-based (i.e., Bird Eye View) detectors favor sparse convolutions (known as SPConv) to speed up training and inference.
FastPillars delivers state-of-the-art accuracy on Open dataset with 1.8X speed up and 3.8 mAPH/L2 improvement over CenterPoint (SPConv-based)
arXiv Detail & Related papers (2023-02-05T12:13:27Z) - CVFNet: Real-time 3D Object Detection by Learning Cross View Features [11.402076835949824]
We present a real-time view-based single stage 3D object detector, namely CVFNet.
We first propose a novel Point-Range feature fusion module that deeply integrates point and range view features in multiple stages.
Then, a special Slice Pillar is designed to well maintain the 3D geometry when transforming the obtained deep point-view features into bird's eye view.
arXiv Detail & Related papers (2022-03-13T06:23:18Z) - Improved Pillar with Fine-grained Feature for 3D Object Detection [23.348710029787068]
3D object detection with LiDAR point clouds plays an important role in autonomous driving perception module.
Existing point-based methods are challenging to reach the speed requirements because of too many raw points.
The 2D grid-based methods, such as PointPillar, can easily achieve a stable and efficient speed based on simple 2D convolution.
arXiv Detail & Related papers (2021-10-12T14:53:14Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector
Representation for 3D Object Detection [100.60209139039472]
We propose the PointVoxel Region based Convolution Neural Networks (PVRCNNs) for accurate 3D detection from point clouds.
Our proposed PV-RCNNs significantly outperform previous state-of-the-art 3D detection methods on both the Open dataset and the highly-competitive KITTI benchmark.
arXiv Detail & Related papers (2021-01-31T14:51:49Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
We propose a universal module that helps 3D detectors focus on the densest region of the point clouds in a boundary-aware manner.
Experiments on KITTI dataset show that DENFI improves the performance of the baseline single-stage detector remarkably.
arXiv Detail & Related papers (2020-04-01T01:21:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.