FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud
- URL: http://arxiv.org/abs/2406.16564v1
- Date: Mon, 24 Jun 2024 12:01:55 GMT
- Title: FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud
- Authors: Yirui Chen, Pengjin Wei, Zhenhuan Liu, Bingchao Wang, Jie Yang, Wei Liu,
- Abstract summary: We address the problem of traversability assessment using point clouds.
We propose a pillar feature extraction module that utilizes PointNet to capture features from point clouds organized in vertical volume.
We then propose a newtemporal attention module to fuse multi-frame information, which can properly handle the varying density problem of LIDAR point clouds.
- Score: 7.711666704468952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Producing traversability maps and understanding the surroundings are crucial prerequisites for autonomous navigation. In this paper, we address the problem of traversability assessment using point clouds. We propose a novel pillar feature extraction module that utilizes PointNet to capture features from point clouds organized in vertical volume and a 2D encoder-decoder structure to conduct traversability classification instead of the widely used 3D convolutions. This results in less computational cost while even better performance is achieved at the same time. We then propose a new spatio-temporal attention module to fuse multi-frame information, which can properly handle the varying density problem of LIDAR point clouds, and this makes our module able to assess distant areas more accurately. Comprehensive experimental results on augmented Semantic KITTI and RELLIS-3D datasets show that our method is able to achieve superior performance over existing approaches both quantitatively and quantitatively.
Related papers
- CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation [7.451629109566809]
This paper introduces CurbNet, a novel framework for curb detection utilizing point cloud segmentation.
We have developed the 3D-Curb dataset based on Semantic KITTI, currently the largest and most diverse collection of curb point clouds.
To tackle the challenges posed by the uneven distribution of curb features on the xy-plane and their dependence on high-frequency features along the z-axis, we introduce the Multi-Scale and Channel Attention (MSCA) module.
arXiv Detail & Related papers (2024-03-25T14:13:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset [0.0]
NuTonomy's nuScenes dataset greatly extends commonly used datasets such as KITTI.
The localization precision of this model is affected by the loss of spatial information in the downscaled feature maps.
We propose to enhance the performance of the CBGS model by designing an auxiliary network, that makes full use of the structure information of the 3D point cloud.
arXiv Detail & Related papers (2022-05-25T06:18:49Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - Deep Point Cloud Reconstruction [74.694733918351]
Point cloud obtained from 3D scanning is often sparse, noisy, and irregular.
To cope with these issues, recent studies have been separately conducted to densify, denoise, and complete inaccurate point cloud.
We propose a deep point cloud reconstruction network consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the initial densification and denoising, 2) a refinement via transformers converting the discrete voxels into 3D points.
arXiv Detail & Related papers (2021-11-23T07:53:28Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds [2.924868086534434]
This paper introduces a novel approach for 3D point cloud semantic segmentation that exploits multiple projections of the point cloud.
Our Multi-Projection Fusion framework analyzes spherical and bird's-eye view projections using two separate highly-efficient 2D fully convolutional models.
arXiv Detail & Related papers (2020-11-03T19:40:43Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.