CVFNet: Real-time 3D Object Detection by Learning Cross View Features
- URL: http://arxiv.org/abs/2203.06585v1
- Date: Sun, 13 Mar 2022 06:23:18 GMT
- Title: CVFNet: Real-time 3D Object Detection by Learning Cross View Features
- Authors: Jiaqi Gu, Zhiyu Xiang, Pan Zhao, Tingming Bai, Lingxuan Wang, Zhiyuan
Zhang
- Abstract summary: We present a real-time view-based single stage 3D object detector, namely CVFNet.
We first propose a novel Point-Range feature fusion module that deeply integrates point and range view features in multiple stages.
Then, a special Slice Pillar is designed to well maintain the 3D geometry when transforming the obtained deep point-view features into bird's eye view.
- Score: 11.402076835949824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years 3D object detection from LiDAR point clouds has made great
progress thanks to the development of deep learning technologies. Although
voxel or point based methods are popular in 3D object detection, they usually
involve time-consuming operations such as 3D convolutions on voxels or ball
query among points, making the resulting network inappropriate for time
critical applications. On the other hand, 2D view-based methods feature high
computing efficiency while usually obtaining inferior performance than the
voxel or point based methods. In this work, we present a real-time view-based
single stage 3D object detector, namely CVFNet to fulfill this task. To
strengthen the cross-view feature learning under the condition of demanding
efficiency, our framework extracts the features of different views and fuses
them in an efficient progressive way. We first propose a novel Point-Range
feature fusion module that deeply integrates point and range view features in
multiple stages. Then, a special Slice Pillar is designed to well maintain the
3D geometry when transforming the obtained deep point-view features into bird's
eye view. To better balance the ratio of samples, a sparse pillar detection
head is presented to focus the detection on the nonempty grids. We conduct
experiments on the popular KITTI and NuScenes benchmark, and state-of-the-art
performances are achieved in terms of both accuracy and speed.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
We propose a novel perspective-aware convolutional layer that captures long-range dependencies in images.
By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture.
We demonstrate improved performance on the KITTI3D dataset, achieving a 23.9% average precision in the easy benchmark.
arXiv Detail & Related papers (2023-08-24T17:25:36Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - Surface-biased Multi-Level Context 3D Object Detection [1.9723551683930771]
This work addresses the object detection task in 3D point clouds using a highly efficient, surface-biased, feature extraction method (wang2022rbgnet)
We propose a 3D object detector that extracts accurate feature representations of object candidates and leverages self-attention on point patches, object candidates, and on the global scene in 3D scene.
arXiv Detail & Related papers (2023-02-13T11:50:04Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.