Robust and Efficient Hamiltonian Learning
- URL: http://arxiv.org/abs/2201.00190v4
- Date: Fri, 23 Jun 2023 06:41:50 GMT
- Title: Robust and Efficient Hamiltonian Learning
- Authors: Wenjun Yu, Jinzhao Sun, Zeyao Han, Xiao Yuan
- Abstract summary: We present a robust and efficient Hamiltonian learning method that circumvents limitations based on mild assumptions.
The proposed method can efficiently learn any Hamiltonian that is sparse on the Pauli basis using only short-time dynamics and local operations.
We numerically test the scaling and the estimation accuracy of the method for transverse field Ising Hamiltonian with random interaction strengths and molecular Hamiltonians.
- Score: 2.121963121603413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the fast development of quantum technology, the sizes of both digital
and analog quantum systems increase drastically. In order to have better
control and understanding of the quantum hardware, an important task is to
characterize the interaction, i.e., to learn the Hamiltonian, which determines
both static and dynamic properties of the system. Conventional Hamiltonian
learning methods either require costly process tomography or adopt impractical
assumptions, such as prior information on the Hamiltonian structure and the
ground or thermal states of the system. In this work, we present a robust and
efficient Hamiltonian learning method that circumvents these limitations based
only on mild assumptions. The proposed method can efficiently learn any
Hamiltonian that is sparse on the Pauli basis using only short-time dynamics
and local operations without any information on the Hamiltonian or preparing
any eigenstates or thermal states. The method has a scalable complexity and a
vanishing failure probability regarding the qubit number. Meanwhile, it
performs robustly given the presence of state preparation and measurement
errors and resiliently against a certain amount of circuit and shot noise. We
numerically test the scaling and the estimation accuracy of the method for
transverse field Ising Hamiltonian with random interaction strengths and
molecular Hamiltonians, both with varying sizes and manually added noise. All
these results verify the robustness and efficacy of the method, paving the way
for a systematic understanding of the dynamics of large quantum systems.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Hamiltonian truncation tensor networks for quantum field theories [42.2225785045544]
We introduce a tensor network method for the classical simulation of continuous quantum field theories.
The method is built on Hamiltonian truncation and tensor network techniques.
One of the key developments is the exact construction of matrix product state representations of global projectors.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Quantum Simulation of Boson-Related Hamiltonians: Techniques, Effective
Hamiltonian Construction, and Error Analysis [6.8063130539569]
We discuss the incorporation of bosonic degrees of freedom into optimized fermion algorithms for near-future quantum simulations.
troublesome factors such as the magnitude of the bosonic degrees of freedom typically complicate the direct quantum simulation of these interacting models.
This strategy should specifically include a suitable fermion/boson-to-qubit mapping scheme to encode sufficiently large yet manageable bosonic modes.
arXiv Detail & Related papers (2023-07-13T06:46:25Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Unified Quantum State Tomography and Hamiltonian Learning Using
Transformer Models: A Language-Translation-Like Approach for Quantum Systems [0.47831562043724657]
We introduce a new approach that employs the attention mechanism in transformer models to effectively merge quantum state tomography and Hamiltonian learning.
We demonstrate the effectiveness of our approach across various quantum systems, ranging from simple 2-qubit cases to more involved 2D antiferromagnetic Heisenberg structures.
arXiv Detail & Related papers (2023-04-24T11:20:44Z) - Coarse-grained effective Hamiltonian via the Magnus Expansion for a
three-level system [0.0]
We use the Magnus expansion as a systematic tool to derive ambiguity-free effective Hamiltonians.
We validate the accuracy of the obtained effective Hamiltonians with suitably tailored fidelities of quantum operations.
arXiv Detail & Related papers (2022-12-16T14:41:10Z) - Scalably learning quantum many-body Hamiltonians from dynamical data [1.702884126441962]
We introduce a highly scalable, data-driven approach to learning families of interacting many-body Hamiltonians from dynamical data.
Our approach is highly practical, experimentally friendly, and intrinsically scalable to allow for system sizes of above 100 spins.
arXiv Detail & Related papers (2022-09-28T18:00:57Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Learning Quantum Hamiltonians from Single-qubit Measurements [5.609584942407068]
We propose a recurrent neural network to learn the parameters of the target Hamiltonians from the temporal records of single-qubit measurements.
It is applicable on both time-independent and time-dependent Hamiltonians.
arXiv Detail & Related papers (2020-12-23T07:15:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.