Scalably learning quantum many-body Hamiltonians from dynamical data
- URL: http://arxiv.org/abs/2209.14328v1
- Date: Wed, 28 Sep 2022 18:00:57 GMT
- Title: Scalably learning quantum many-body Hamiltonians from dynamical data
- Authors: Frederik Wilde, Augustine Kshetrimayum, Ingo Roth, Dominik Hangleiter,
Ryan Sweke, Jens Eisert
- Abstract summary: We introduce a highly scalable, data-driven approach to learning families of interacting many-body Hamiltonians from dynamical data.
Our approach is highly practical, experimentally friendly, and intrinsically scalable to allow for system sizes of above 100 spins.
- Score: 1.702884126441962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The physics of a closed quantum mechanical system is governed by its
Hamiltonian. However, in most practical situations, this Hamiltonian is not
precisely known, and ultimately all there is are data obtained from
measurements on the system. In this work, we introduce a highly scalable,
data-driven approach to learning families of interacting many-body Hamiltonians
from dynamical data, by bringing together techniques from gradient-based
optimization from machine learning with efficient quantum state representations
in terms of tensor networks. Our approach is highly practical, experimentally
friendly, and intrinsically scalable to allow for system sizes of above 100
spins. In particular, we demonstrate on synthetic data that the algorithm works
even if one is restricted to one simple initial state, a small number of
single-qubit observables, and time evolution up to relatively short times. For
the concrete example of the one-dimensional Heisenberg model our algorithm
exhibits an error constant in the system size and scaling as the inverse square
root of the size of the data set.
Related papers
- Automated quantum system modeling with machine learning [0.0]
We show that a machine learning algorithm is able to construct quantum models, given a straightforward set of quantum dynamics measurements.
We demonstrate through simulations of a Markovian open quantum system that a neural network can automatically detect the number $N $ of effective states.
arXiv Detail & Related papers (2024-09-27T15:18:20Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
A fundamental problem in quantum many-body physics is that of finding ground states of local Hamiltonians.
We introduce two approaches that achieve a constant sample complexity, independent of system size $n$, for learning ground state properties.
arXiv Detail & Related papers (2024-05-28T18:00:32Z) - A hybrid method for quantum dynamics simulation [2.6340447642310383]
We propose a hybrid approach to simulate quantum many body dynamics by combining Trotter based quantum algorithm with classical dynamic mode decomposition.
Our method predicts observables of a quantum state in the long time by using data from a set of short time measurements from a quantum computer.
arXiv Detail & Related papers (2023-07-27T23:43:13Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Robust and Efficient Hamiltonian Learning [2.121963121603413]
We present a robust and efficient Hamiltonian learning method that circumvents limitations based on mild assumptions.
The proposed method can efficiently learn any Hamiltonian that is sparse on the Pauli basis using only short-time dynamics and local operations.
We numerically test the scaling and the estimation accuracy of the method for transverse field Ising Hamiltonian with random interaction strengths and molecular Hamiltonians.
arXiv Detail & Related papers (2022-01-01T13:48:15Z) - Scalable Hamiltonian learning for large-scale out-of-equilibrium quantum
dynamics [0.0]
We present a scalable algorithm based on neural networks for Hamiltonian tomography in out-of-equilibrium quantum systems.
Specifically, we show that our algorithm is able to reconstruct the Hamiltonian of an arbitrary size quasi-1D bosonic system.
arXiv Detail & Related papers (2021-03-01T19:00:15Z) - Learning Quantum Hamiltonians from Single-qubit Measurements [5.609584942407068]
We propose a recurrent neural network to learn the parameters of the target Hamiltonians from the temporal records of single-qubit measurements.
It is applicable on both time-independent and time-dependent Hamiltonians.
arXiv Detail & Related papers (2020-12-23T07:15:20Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.