論文の概要: Modeling Associative Reasoning Processes
- arxiv url: http://arxiv.org/abs/2201.00716v1
- Date: Mon, 3 Jan 2022 15:38:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-04 15:28:20.161683
- Title: Modeling Associative Reasoning Processes
- Title(参考訳): 連想推論過程のモデリング
- Authors: Ulrich Furbach, Claudia Schon, Marco Ragni
- Abstract要約: 本稿では,論理的推論機構を適用して連想推論をモデル化する形式的音響手法を提案する。
意識を含む幅広い認知現象に対するモデルの有効性を示す。
- 参考スコア(独自算出の注目度): 3.6739949215165164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human capability to reason about one domain by using knowledge of other
domains has been researched for more than 50 years, but models that are
formally sound and predict cognitive process are sparse. We propose a formally
sound method that models associative reasoning by adapting logical reasoning
mechanisms. In particular it is shown that the combination with large
commensense knowledge within a single reasoning system demands for an efficient
and powerful association technique. This approach is also used for modelling
mind-wandering and the Remote Associates Test (RAT) for testing creativity. In
a general discussion we show implications of the model for a broad variety of
cognitive phenomena including consciousness.
- Abstract(参考訳): 他のドメインの知識を用いて、あるドメインを推論する人間の能力は50年以上研究されてきたが、公式には健全で、認知過程を予測するモデルは少ない。
論理推論機構を応用して連想推論をモデル化する形式的健全な手法を提案する。
特に,1つの推論系における大きなコマンセンス知識の組み合わせは,効率的かつ強力な関連技術を必要とする。
このアプローチは、マインドランシングのモデル化や、創造性をテストするためのリモートアソシエイトテスト(RAT)にも使用される。
一般論として,意識を含む様々な認知現象に対するモデルの有効性について述べる。
関連論文リスト
- Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Crystal: Introspective Reasoners Reinforced with Self-Feedback [118.53428015478957]
本稿では,イントロスペクティブ・コモンセンス推論器であるCrystalを開発するための新しい手法を提案する。
コモンセンス問題に対処するため、まず与えられた質問に関連する知識ステートメントのイントロスペクションを行い、その後、それまでのイントロスペクションされた知識に根ざした情報予測を行う。
実験により、クリスタルは標準的な微調整法と連鎖蒸留法の両方で著しく優れており、コモンセンス推論プロセスの透明性を高めていることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:23:58Z) - CommonsenseVIS: Visualizing and Understanding Commonsense Reasoning
Capabilities of Natural Language Models [30.63276809199399]
本稿では,外部コモンセンス知識ベースを用いた視覚的説明システムであるCommonsenseVISについて述べる。
本システムでは,異なる概念とその基盤となる関係について,多段階の可視化とインタラクティブなモデル探索と編集を行う。
論文 参考訳(メタデータ) (2023-07-23T17:16:13Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
我々は、AIシステムにおけるアナロジーを支援するために、直感的な言語ベースの抽象化の使用について検討する。
具体的には,大規模事前学習言語モデル(PLM)を視覚的Raven's Progressive Matrices(RPM)に適用する。
PLMはゼロショットリレーショナル推論に顕著な能力を示し、人間のパフォーマンスを超え、教師付き視覚ベースの手法に近づいた。
論文 参考訳(メタデータ) (2023-05-28T04:22:26Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Social Commonsense Reasoning with Multi-Head Knowledge Attention [24.70946979449572]
社会的コモンセンス推論には、テキストの理解、社会イベントに関する知識、その実践的な意味、およびコモンセンス推論スキルが必要である。
本稿では,半構造化コモンセンス推論規則を符号化し,それをトランスフォーマーベースの推論セルに組み込むことを学習する,新しいマルチヘッド知識アテンションモデルを提案する。
論文 参考訳(メタデータ) (2020-10-12T10:24:40Z) - Towards Interpretable Reasoning over Paragraph Effects in Situation [126.65672196760345]
我々は,原因と効果を理解するためのモデルを必要とする状況において,段落効果を推論する作業に焦点をあてる。
本稿では,ニューラルネットワークモジュールを用いた推論プロセスの各ステップを明示的にモデル化する逐次的手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルにつながる。
論文 参考訳(メタデータ) (2020-10-03T04:03:52Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。