論文の概要: Execute Order 66: Targeted Data Poisoning for Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2201.00762v1
- Date: Mon, 3 Jan 2022 17:09:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-04 14:12:36.450180
- Title: Execute Order 66: Targeted Data Poisoning for Reinforcement Learning
- Title(参考訳): 実行順序66:強化学習のためのターゲットデータ中毒
- Authors: Harrison Foley and Liam Fowl and Tom Goldstein and Gavin Taylor
- Abstract要約: 本研究は, 特定の目標状態にのみ, エージェントの誤動作を引き起こす, 強化学習のための無害な毒殺攻撃を導入する。
我々は、近年の手法である勾配アライメントを強化学習に適用することで、これを実現する。
本手法を検証し,異なる難易度を持つ2つのアタリゲームで成功例を示す。
- 参考スコア(独自算出の注目度): 52.593097204559314
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Data poisoning for reinforcement learning has historically focused on general
performance degradation, and targeted attacks have been successful via
perturbations that involve control of the victim's policy and rewards. We
introduce an insidious poisoning attack for reinforcement learning which causes
agent misbehavior only at specific target states - all while minimally
modifying a small fraction of training observations without assuming any
control over policy or reward. We accomplish this by adapting a recent
technique, gradient alignment, to reinforcement learning. We test our method
and demonstrate success in two Atari games of varying difficulty.
- Abstract(参考訳): 強化学習のためのデータ中毒は、歴史的に一般的なパフォーマンス劣化に焦点を当てており、被害者の方針や報酬の制御を含む摂動を通じて標的攻撃が成功している。
本研究は,特定の目標状態においてのみエージェントの不正行動を引き起こす強化学習に対する有害な毒殺攻撃を,政策や報酬の制御を前提とせず,少数のトレーニング観察を最小限に修正しながらも導入する。
我々は,最近の手法である勾配アライメントを強化学習に適用することにより,これを実現する。
本手法を検証し,難易度が異なる2つのアタリゲームで成功例を示す。
関連論文リスト
- Behavior-Targeted Attack on Reinforcement Learning with Limited Access to Victim's Policy [9.530897053573186]
ブラックボックス内の被害者エージェントを操作する新しい方法を提案する。
本手法は二段階最適化問題として定式化され,マッチング問題に還元される。
いくつかの強化学習ベンチマークにおける実証評価の結果,提案手法はベースラインに対する攻撃性能に優れていた。
論文 参考訳(メタデータ) (2024-06-06T08:49:51Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - PACOL: Poisoning Attacks Against Continual Learners [1.569413950416037]
本研究では,悪意ある誤報によって連続学習システムを操作できることを実証する。
本稿では,連続学習者を対象としたデータ中毒攻撃の新たなカテゴリについて紹介する。
総合的な実験のセットは、一般的に使われている生成的リプレイと正規化に基づく攻撃方法に対する継続的な学習アプローチの脆弱性を示している。
論文 参考訳(メタデータ) (2023-11-18T00:20:57Z) - Not All Poisons are Created Equal: Robust Training against Data
Poisoning [15.761683760167777]
データ中毒は、トレーニングデータに悪意ある工芸品のサンプルを注入することで、テスト時間対象のサンプルを誤分類する。
各種データ中毒攻撃の成功率を大幅に低減する効率的な防御機構を提案する。
論文 参考訳(メタデータ) (2022-10-18T08:19:41Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Where Did You Learn That From? Surprising Effectiveness of Membership
Inference Attacks Against Temporally Correlated Data in Deep Reinforcement
Learning [114.9857000195174]
深い強化学習を産業的に広く採用する上での大きな課題は、プライバシー侵害の潜在的な脆弱性である。
本稿では, 深層強化学習アルゴリズムの脆弱性を検証し, メンバーシップ推論攻撃に適応する対戦型攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-08T23:44:57Z) - Understanding Adversarial Attacks on Observations in Deep Reinforcement
Learning [32.12283927682007]
深層強化学習モデルは、観測を操作することで被害者の総報酬を減少させる敵攻撃に対して脆弱である。
関数空間における逆攻撃の問題を修正し、以前の勾配に基づく攻撃をいくつかの部分空間に分割する。
第一段階では、環境をハックして偽装ポリシーを訓練し、最下位の報酬にルーティングするトラジェクトリのセットを発見する。
本手法は,攻撃エージェントの性能に対して,既存の手法よりも厳密な理論上界を提供する。
論文 参考訳(メタデータ) (2021-06-30T07:41:51Z) - Disturbing Reinforcement Learning Agents with Corrupted Rewards [62.997667081978825]
強化学習アルゴリズムに対する報酬の摂動に基づく異なる攻撃戦略の効果を分析します。
敵対的な報酬をスムーズに作成することは学習者を誤解させることができ、低探査確率値を使用すると、学習した政策は報酬を腐敗させるのがより堅牢であることを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:53:48Z) - Provable Defense Against Delusive Poisoning [64.69220849669948]
本研究は, 対人訓練が妄想性中毒に対する防御法であることを示す。
これは、敵の訓練が妄想的中毒に対する原則的な防御方法であることを意味している。
論文 参考訳(メタデータ) (2021-02-09T09:19:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。