Neural Piecewise-Constant Delay Differential Equations
- URL: http://arxiv.org/abs/2201.00960v1
- Date: Tue, 4 Jan 2022 03:44:15 GMT
- Title: Neural Piecewise-Constant Delay Differential Equations
- Authors: Qunxi Zhu and Yifei Shen and Dongsheng Li and Wei Lin
- Abstract summary: In this article, we introduce a new sort of continuous-depth neural network, called the Neural Piecewise-Constant Delay Differential Equations (PCDDEs)
We show that the Neural PCDDEs do outperform the several existing continuous-depth neural frameworks on the one-dimensional piecewise-constant delay population dynamics and real-world datasets.
- Score: 17.55759866368141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous-depth neural networks, such as the Neural Ordinary Differential
Equations (ODEs), have aroused a great deal of interest from the communities of
machine learning and data science in recent years, which bridge the connection
between deep neural networks and dynamical systems. In this article, we
introduce a new sort of continuous-depth neural network, called the Neural
Piecewise-Constant Delay Differential Equations (PCDDEs). Here, unlike the
recently proposed framework of the Neural Delay Differential Equations (DDEs),
we transform the single delay into the piecewise-constant delay(s). The Neural
PCDDEs with such a transformation, on one hand, inherit the strength of
universal approximating capability in Neural DDEs. On the other hand, the
Neural PCDDEs, leveraging the contributions of the information from the
multiple previous time steps, further promote the modeling capability without
augmenting the network dimension. With such a promotion, we show that the
Neural PCDDEs do outperform the several existing continuous-depth neural
frameworks on the one-dimensional piecewise-constant delay population dynamics
and real-world datasets, including MNIST, CIFAR10, and SVHN.
Related papers
- Neural Fractional Differential Equations [2.812395851874055]
Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering.
We propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data.
arXiv Detail & Related papers (2024-03-05T07:45:29Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
We propose a new class of continuous-depth neural networks with delay, named Neural Delay Differential Equations (NDDEs)
Compared to NODEs, NDDEs have a stronger capacity of nonlinear representations.
We achieve lower loss and higher accuracy not only for the data produced synthetically but also for the CIFAR10, a well-known image dataset.
arXiv Detail & Related papers (2023-04-11T16:09:28Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
We show that mathematical model order reduction methods can be used for compressing and accelerating Neural ODEs.
We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and operations as layers of the neural network.
arXiv Detail & Related papers (2021-05-28T19:27:09Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Neural Delay Differential Equations [9.077775405204347]
We propose a new class of continuous-depth neural networks with delay, named as Neural Delay Differential Equations (NDDEs)
For computing the corresponding gradients, we use the adjoint sensitivity method to obtain the delayed dynamics of the adjoint.
Our results reveal that appropriately articulating the elements of dynamical systems into the network design is truly beneficial to promoting the network performance.
arXiv Detail & Related papers (2021-02-22T06:53:51Z) - Deep Neural Networks using a Single Neuron: Folded-in-Time Architecture
using Feedback-Modulated Delay Loops [0.0]
We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops.
This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals.
The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.
arXiv Detail & Related papers (2020-11-19T21:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
We propose a novel family of Neural ODEs with time-varying weights.
We outperform previous Neural ODE variants in both speed and representational capacity.
arXiv Detail & Related papers (2020-05-05T01:41:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.