Neural Fractional Differential Equations
- URL: http://arxiv.org/abs/2403.02737v2
- Date: Thu, 25 Jul 2024 09:18:24 GMT
- Title: Neural Fractional Differential Equations
- Authors: C. Coelho, M. Fernanda P. Costa, L. L. Ferrás,
- Abstract summary: Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering.
We propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data.
- Score: 2.812395851874055
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering. They extend the traditional concepts of differentiation and integration to non-integer orders, enabling a more precise representation of processes characterised by non-local and memory-dependent behaviours. This property is useful in systems where variables do not respond to changes instantaneously, but instead exhibit a strong memory of past interactions. Having this in mind, and drawing inspiration from Neural Ordinary Differential Equations (Neural ODEs), we propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data. This work provides a comprehensive overview of the numerical method employed in Neural FDEs and the Neural FDE architecture. The numerical outcomes suggest that, despite being more computationally demanding, the Neural FDE may outperform the Neural ODE in modelling systems with memory or dependencies on past states, and it can effectively be applied to learn more intricate dynamical systems.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Embedding Capabilities of Neural ODEs [0.0]
We study input-output relations of neural ODEs using dynamical systems theory.
We prove several results about the exact embedding of maps in different neural ODE architectures in low and high dimension.
arXiv Detail & Related papers (2023-08-02T15:16:34Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - On Neural Differential Equations [13.503274710499971]
In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equations are two sides of the same coin.
NDEs are suitable for tackling generative problems, dynamical systems, and time series.
NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides.
arXiv Detail & Related papers (2022-02-04T23:32:29Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
We propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems.
We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics.
Our model can be applied to any data without requiring any prior knowledge about the governing PDE.
arXiv Detail & Related papers (2021-11-15T10:59:52Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
We show that mathematical model order reduction methods can be used for compressing and accelerating Neural ODEs.
We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and operations as layers of the neural network.
arXiv Detail & Related papers (2021-05-28T19:27:09Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
We propose a novel family of Neural ODEs with time-varying weights.
We outperform previous Neural ODE variants in both speed and representational capacity.
arXiv Detail & Related papers (2020-05-05T01:41:46Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.