Fixed Point Quantum Monte Carlo
- URL: http://arxiv.org/abs/2201.01383v1
- Date: Tue, 4 Jan 2022 23:52:14 GMT
- Title: Fixed Point Quantum Monte Carlo
- Authors: Romain Chessex, Massimo Borrelli, Hans Christian \"Ottinger
- Abstract summary: We present a new approach to the study of equilibrium properties in many-body quantum physics.
Our method takes inspiration from Density Matrix Quantum Monte Carlo and incorporates new crucial features.
We benchmark our method by applying it to two case-studies in condensed matter physics, show its accuracy and further discuss its efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new approach to the study of equilibrium properties in many-body
quantum physics. Our method takes inspiration from Density Matrix Quantum Monte
Carlo and incorporates new crucial features. First of all, the dynamics is
transferred to the Laplace representation where an exact equation can be
derived and solved using a simulation-step that, unlike most Monte Carlo
methods, is not a priori physically bounded. Moreover, the spawning events are
formulated in terms of two-process stochastic unravellings of quantum master
equations, a formalism that is particularly useful when working with density
matrices. And last, this is equivalent to an interaction picture, where the
free part is integrated exactly and the convergence rate can be greatly
increased if the interaction parameter is small. We benchmark our method by
applying it to two case-studies in condensed matter physics, show its accuracy
and further discuss its efficiency.
Related papers
- Gauge-Fixing Quantum Density Operators At Scale [0.0]
We provide theory, algorithms, and simulations of non-equilibrium quantum systems.
We analytically and numerically examine the virtual freedoms associated with the representation of quantum density operators.
arXiv Detail & Related papers (2024-11-05T22:56:13Z) - Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - A Theoretical Framework for an Efficient Normalizing Flow-Based Solution to the Electronic Schrodinger Equation [8.648660469053342]
A central problem in quantum mechanics involves solving the Electronic Schrodinger Equation for a molecule or material.
We propose a solution via an ansatz which is cheap to sample from, yet satisfies the requisite quantum mechanical properties.
arXiv Detail & Related papers (2024-05-28T15:42:15Z) - Towards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods [0.0]
We present a strategy for studying the running coupling and extracting the non-perturbative $Lambda$- parameter.
We use Monte Carlo simulations and quantum computing to bridge results from small lattice spacings to large-scale lattice calculations.
The procedure outlined in this work can be extended to Abelian and non-Abelian lattice gauge theories with matter fields.
arXiv Detail & Related papers (2024-04-26T17:17:20Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Dynamical replica analysis of quantum annealing [0.0]
An interesting alternative approach to the dynamics of quantum spin systems was proposed about a decade ago.
It involves creating a proxy dynamics via the Suzuki-Trotter mapping of the quantum ensemble to a classical one.
In this chapter we give an introduction to this approach, focusing on the ideas and assumptions behind the derivations.
arXiv Detail & Related papers (2020-10-23T12:17:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.