Towards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods
- URL: http://arxiv.org/abs/2404.17545v2
- Date: Wed, 12 Jun 2024 11:47:32 GMT
- Title: Towards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods
- Authors: Arianna Crippa, Simone Romiti, Lena Funcke, Karl Jansen, Stefan Kühn, Paolo Stornati, Carsten Urbach,
- Abstract summary: We present a strategy for studying the running coupling and extracting the non-perturbative $Lambda$- parameter.
We use Monte Carlo simulations and quantum computing to bridge results from small lattice spacings to large-scale lattice calculations.
The procedure outlined in this work can be extended to Abelian and non-Abelian lattice gauge theories with matter fields.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we examine a compact $U(1)$ lattice gauge theory in $(2+1)$ dimensions and present a strategy for studying the running coupling and extracting the non-perturbative $\Lambda$-parameter. To this end, we combine Monte Carlo simulations and quantum computing, where the former can be used to determine the numerical value of the lattice spacing $a$, and the latter allows for reaching the perturbative regime at very small values of the bare coupling and, correspondingly, small values of $a$. The methodology involves a series of sequential steps (i.e., the step scaling function) to bridge results from small lattice spacings to non-perturbative large-scale lattice calculations. Focusing on the pure gauge case, we demonstrate that these quantum circuits, adapted to gauge degrees of freedom, are able to capture the relevant physics by studying the expectation value of the plaquette operator, for matching with corresponding Monte Carlo simulations. We also present results for the static potential and static force, which can be related to the renormalized coupling. The procedure outlined in this work can be extended to Abelian and non-Abelian lattice gauge theories with matter fields and might provide a way towards studying lattice quantum chromodynamics utilizing both quantum and classical methods.
Related papers
- An efficient finite-resource formulation of non-Abelian lattice gauge theories beyond one dimension [0.0]
We propose a resource-efficient method to compute the running of the coupling in non-Abelian gauge theories beyond one spatial dimension.
Our method enables computations at arbitrary values of the bare coupling and lattice spacing with current quantum computers, simulators and tensor-network calculations.
arXiv Detail & Related papers (2024-09-06T17:59:24Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Strategies for the Determination of the Running Coupling of
$(2+1)$-dimensional QED with Quantum Computing [0.0]
We propose to utilize NISQ-era quantum devices to compute short distance quantities in $(2+1)$-dimensional QED.
We perform a calculation of the mass gap in the small and intermediate regime, demonstrating, in the latter case, that it can be resolved reliably.
The so obtained mass gap can be used to match corresponding results from Monte Carlo simulations, which can be used eventually to set the physical scale.
arXiv Detail & Related papers (2022-06-24T18:27:24Z) - Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d [0.0]
We study a lattice gauge theory where the gauge fields, represented by spin-$frac12$ operators are coupled to a single flavor of staggered fermions.
Using matrix product states on infinite cylinders with increasing diameter, we conjecture its phase diagram in $(2+1)$-d.
Our study reveals a rich phase diagram with exotic phases and interesting phase transitions to a potential liquid-like phase.
arXiv Detail & Related papers (2021-12-01T19:00:03Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - The quantum sine-Gordon model with quantum circuits [0.0]
We numerically investigate a one-dimensional, faithful, analog, quantum electronic circuit simulator built out of Josephson junctions.
We provide numerical evidence that the parameters required to realize the quantum sine-Gordon model are accessible with modern-day superconducting circuit technology.
arXiv Detail & Related papers (2020-07-14T07:39:31Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - A resource efficient approach for quantum and classical simulations of
gauge theories in particle physics [0.0]
lattice gauge theory (LGT) calculations have been pivotal in our understanding of fundamental interactions.
Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation.
We provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation.
arXiv Detail & Related papers (2020-06-25T04:10:11Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.