論文の概要: Multi-Robot Collaborative Perception with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2201.01760v1
- Date: Wed, 5 Jan 2022 18:47:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-06 14:35:48.469484
- Title: Multi-Robot Collaborative Perception with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたマルチロボット協調知覚
- Authors: Yang Zhou, Jiuhong Xiao, Yue Zhou, and Giuseppe Loianno
- Abstract要約: 汎用グラフニューラルネットワーク(GNN)を提案する。
提案手法は,単眼深度推定やセマンティックセグメンテーションなどの多視点視覚認識問題に対処できることを示す。
- 参考スコア(独自算出の注目度): 6.383576104583731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-robot systems such as swarms of aerial robots are naturally suited to
offer additional flexibility, resilience, and robustness in several tasks
compared to a single robot by enabling cooperation among the agents. To enhance
the autonomous robot decision-making process and situational awareness,
multi-robot systems have to coordinate their perception capabilities to
collect, share, and fuse environment information among the agents in an
efficient and meaningful way such to accurately obtain context-appropriate
information or gain resilience to sensor noise or failures. In this paper, we
propose a general-purpose Graph Neural Network (GNN) with the main goal to
increase, in multi-robot perception tasks, single robots' inference perception
accuracy as well as resilience to sensor failures and disturbances. We show
that the proposed framework can address multi-view visual perception problems
such as monocular depth estimation and semantic segmentation. Several
experiments both using photo-realistic and real data gathered from multiple
aerial robots' viewpoints show the effectiveness of the proposed approach in
challenging inference conditions including images corrupted by heavy noise and
camera occlusions or failures.
- Abstract(参考訳): 空飛ぶロボットの群れのようなマルチロボットシステムは、エージェント間の協調を可能にすることで、複数のタスクに対して柔軟性、レジリエンス、堅牢性を提供するのに自然に適している。
自律型ロボット意思決定プロセスと状況認識を強化するために、マルチロボットシステムは、文脈に合った情報を正確に取得したり、センサノイズや故障に対する反発力を得るために、エージェント間の環境情報を収集、共有、融合するための認識能力を調整する必要がある。
本稿では,マルチロボット認識タスク,単一ロボットの推論知覚精度,センサ故障や障害に対するレジリエンスの向上を主目的とした汎用グラフニューラルネットワーク(GNN)を提案する。
提案手法は,単眼深度推定やセマンティックセグメンテーションなどの多視点視覚認識問題に対処できることを示す。
複数の空中ロボットの視点から収集したフォトリアリスティックと実データを用いたいくつかの実験は、重騒音やカメラのオクルージョンや故障などの画像を含む推論条件に挑戦する手法の有効性を示している。
関連論文リスト
- CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
マーカーレスポーズ推定手法は、カメラとロボットのキャリブレーションに時間を要する物理的な設定を不要にしている。
部分的に見えるロボットマニピュレータでロボットのポーズを推定できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T16:22:43Z) - CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments [8.177157078744571]
本稿では,先駆的で包括的な実世界のマルチロボット協調認識データセットを提案する。
生のセンサー入力、ポーズ推定、オプションのハイレベル認識アノテーションが特徴である。
この研究は、マルチロボット設定におけるマルチモーダル協調認識を通して、ハイレベルなシーン理解の潜在的研究を解き放つだろうと考えている。
論文 参考訳(メタデータ) (2024-05-23T15:59:48Z) - Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
提案フレームワークは,RGBや深度カメラ,マイク,力トルクセンサなど,さまざまなロボットセンサから収集した異種データストリームを統合する。
統合されたデータは、ディープオートエンコーダを訓練して、通常の状態を示す多感覚データの潜在表現を構築するために使用される。
次に、トレーニングされたエンコーダの潜伏値と再構成された入力データの潜伏値との差によって測定された誤差スコアによって異常を識別することができる。
論文 参考訳(メタデータ) (2024-03-06T09:15:53Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
人間は本質的に、操作作業において環境を効率的に探索し、相互作用することを可能にする、一般化可能な視覚表現を持っている。
我々は、このアイデアを、事前訓練された視覚エンコーダの上に、人間指向のマルチタスク微調整のレンズを通してフォーマル化する。
我々のタスクフュージョンデコーダは、下流操作ポリシー学習のための最先端の3つのビジュアルエンコーダの表現を一貫して改善する。
論文 参考訳(メタデータ) (2023-10-04T17:59:38Z) - Challenges for Monocular 6D Object Pose Estimation in Robotics [12.037567673872662]
ロボット工学とコンピュータビジョンの両方から、最近の出版物について統一された視点を提供する。
我々は,オクルージョン処理,新しいポーズ表現,カテゴリーレベルのポーズ推定の形式化と改善が依然として基本的な課題であることがわかった。
これらの問題に対処するためには、オントロジ的推論、変形可能性処理、シーンレベルの推論、現実的なデータセット、アルゴリズムの生態的フットプリントを改善する必要がある。
論文 参考訳(メタデータ) (2023-07-22T21:36:57Z) - See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation [49.925499720323806]
視覚的、聴覚的、触覚的知覚が、ロボットが複雑な操作タスクを解くのにどのように役立つかを研究する。
私たちは、カメラで見たり、コンタクトマイクで聞いたり、視覚ベースの触覚センサーで感じるロボットシステムを構築しました。
論文 参考訳(メタデータ) (2022-12-07T18:55:53Z) - Enhancing Multi-Robot Perception via Learned Data Association [37.866254392010454]
本稿では,マルチロボット協調認識問題,特に分散セマンティックセグメンテーションにおけるマルチビューインフィル問題に対処する。
本稿では,ロボット群において各エージェントにデプロイ可能なニューラルネットワークであるMulti-Agent Infilling Networkを提案する。
具体的には、各ロボットが視覚情報を局所的に符号化・復号し、ニューラルメカニズムにより、不確実性を認識し、文脈に基づく中間特徴の交換を可能にする。
論文 参考訳(メタデータ) (2021-07-01T22:45:26Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。