論文の概要: CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments
- arxiv url: http://arxiv.org/abs/2405.14731v1
- Date: Thu, 23 May 2024 15:59:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:06:33.635943
- Title: CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments
- Title(参考訳): CoPeD-Advancing Multi-Robot Collaborative Perception: A Comprehensive Dataset in Real-World Environments
- Authors: Yang Zhou, Long Quang, Carlos Nieto-Granda, Giuseppe Loianno,
- Abstract要約: 本稿では,先駆的で包括的な実世界のマルチロボット協調認識データセットを提案する。
生のセンサー入力、ポーズ推定、オプションのハイレベル認識アノテーションが特徴である。
この研究は、マルチロボット設定におけるマルチモーダル協調認識を通して、ハイレベルなシーン理解の潜在的研究を解き放つだろうと考えている。
- 参考スコア(独自算出の注目度): 8.177157078744571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past decade, although single-robot perception has made significant advancements, the exploration of multi-robot collaborative perception remains largely unexplored. This involves fusing compressed, intermittent, limited, heterogeneous, and asynchronous environmental information across multiple robots to enhance overall perception, despite challenges like sensor noise, occlusions, and sensor failures. One major hurdle has been the lack of real-world datasets. This paper presents a pioneering and comprehensive real-world multi-robot collaborative perception dataset to boost research in this area. Our dataset leverages the untapped potential of air-ground robot collaboration featuring distinct spatial viewpoints, complementary robot mobilities, coverage ranges, and sensor modalities. It features raw sensor inputs, pose estimation, and optional high-level perception annotation, thus accommodating diverse research interests. Compared to existing datasets predominantly designed for Simultaneous Localization and Mapping (SLAM), our setup ensures a diverse range and adequate overlap of sensor views to facilitate the study of multi-robot collaborative perception algorithms. We demonstrate the value of this dataset qualitatively through multiple collaborative perception tasks. We believe this work will unlock the potential research of high-level scene understanding through multi-modal collaborative perception in multi-robot settings.
- Abstract(参考訳): 過去10年間、単一ロボットの知覚は大きな進歩を遂げてきたが、複数ロボットの協調的な知覚の探索はほとんど未発見のままである。
これは、複数のロボットにまたがって圧縮された、断続的で、制限された、異質で、非同期な環境情報を融合させることで、センサーノイズ、閉塞、センサーの故障といった問題にもかかわらず、全体的な知覚を高めます。
ひとつ大きなハードルは、現実世界のデータセットがないことだ。
本稿では,この領域の研究を促進するために,先駆的で包括的な実世界のマルチロボット協調認識データセットを提案する。
我々のデータセットは、異なる空間的視点、相補的なロボットの運動量、カバー範囲、センサーのモーダル性を特徴とする空地ロボット協調の未解決の可能性を生かしている。
生のセンサー入力、ポーズ推定、オプションのハイレベルな認識アノテーションが特徴で、様々な研究の関心を集めている。
同時局在マッピング(SLAM)のために設計された既存のデータセットと比較して,センサビューの多様な範囲と適切な重複を保証し,マルチロボット協調認識アルゴリズムの研究を容易にする。
我々は,複数の協調認識タスクを通じて,このデータセットの価値を定性的に示す。
この研究は、マルチロボット設定におけるマルチモーダル協調認識を通して、ハイレベルなシーン理解の潜在的研究を解き放つだろうと考えている。
関連論文リスト
- JRDB-PanoTrack: An Open-world Panoptic Segmentation and Tracking Robotic Dataset in Crowded Human Environments [33.85323884177833]
JRDB-PanoTrackは,ロボットシステムにおける環境理解のためのオープンワールド・パノプティクス・セグメンテーションとトラッキング・ベンチマークである。
JRDB-PanoTrackは,1)屋内および屋外の混雑シーンを含む各種データと,総合的な2Dおよび3D同期データモダリティを含む。
クローズドおよびオープンワールド認識ベンチマーク用のさまざまなオブジェクトクラス、評価のためのOSPAベースのメトリクス。
論文 参考訳(メタデータ) (2024-04-02T06:43:22Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
この論文は、人間-ロボットインタラクション(HRI)の文脈で未知の物体を教えることを目的としている。
視線追跡と拡張現実(Augmented Reality)を組み合わせることで、人間の教師がロボットとコミュニケーションできる強力なシナジーが生まれました。
ロボットの物体検出能力は、広範囲なデータセットで訓練された最先端の物体検出器に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-12T11:34:43Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
本研究では,コミュニケーションが限られ,位置情報がない未知の環境での効率的なマルチロボット探索のための新しいハイブリッドアルゴリズムを提案する。
連続した目標情報なしでシナリオに合うように、ローカルなベストとグローバルなベストポジションを再定義する。
提示された研究は、限られた情報と通信能力を持つシナリオにおけるマルチロボット探索の強化を約束している。
論文 参考訳(メタデータ) (2023-11-28T17:05:25Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
本稿では,物理に基づくメタバース合成により構築した大規模写真リアリスティックビンピックデータセットであるMetaGraspNetを紹介する。
提案データセットは,82種類の記事に対して217kのRGBD画像を含み,オブジェクト検出,アモーダル認識,キーポイント検出,操作順序,および並列ジャウと真空グリップパー用のアンビデクストグリップラベルの完全なアノテーションを備える。
また,2.3k以上の完全アノテートされた高品質なRGBD画像からなる実際のデータセットを5段階の難易度と,異なるオブジェクトおよびレイアウト特性を評価するための見えないオブジェクトセットに分割する。
論文 参考訳(メタデータ) (2022-08-08T08:15:34Z) - Multi-Robot Collaborative Perception with Graph Neural Networks [6.383576104583731]
汎用グラフニューラルネットワーク(GNN)を提案する。
提案手法は,単眼深度推定やセマンティックセグメンテーションなどの多視点視覚認識問題に対処できることを示す。
論文 参考訳(メタデータ) (2022-01-05T18:47:07Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Enhancing Multi-Robot Perception via Learned Data Association [37.866254392010454]
本稿では,マルチロボット協調認識問題,特に分散セマンティックセグメンテーションにおけるマルチビューインフィル問題に対処する。
本稿では,ロボット群において各エージェントにデプロイ可能なニューラルネットワークであるMulti-Agent Infilling Networkを提案する。
具体的には、各ロボットが視覚情報を局所的に符号化・復号し、ニューラルメカニズムにより、不確実性を認識し、文脈に基づく中間特徴の交換を可能にする。
論文 参考訳(メタデータ) (2021-07-01T22:45:26Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。