論文の概要: Frame Shift Prediction
- arxiv url: http://arxiv.org/abs/2201.01837v1
- Date: Wed, 5 Jan 2022 22:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-07 22:05:27.919173
- Title: Frame Shift Prediction
- Title(参考訳): フレームシフト予測
- Authors: Zheng-Xin Yong, Patrick D. Watson, Tiago Timponi Torrent, Oliver
Czulo, Collin F. Baker
- Abstract要約: フレームシフト(英: Frame shift)は、異なるフレームを起動する言語素材のペアが対応する結果となる翻訳における言語横断的な現象である。
フレームシフトを予測する機能により、アノテーションプロジェクションによる多言語FrameNetの自動生成が可能になる。
- 参考スコア(独自算出の注目度): 1.4699455652461724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frame shift is a cross-linguistic phenomenon in translation which results in
corresponding pairs of linguistic material evoking different frames. The
ability to predict frame shifts enables automatic creation of multilingual
FrameNets through annotation projection. Here, we propose the Frame Shift
Prediction task and demonstrate that graph attention networks, combined with
auxiliary training, can learn cross-linguistic frame-to-frame correspondence
and predict frame shifts.
- Abstract(参考訳): フレームシフト(英: frame shift)は、翻訳における言語横断現象であり、異なるフレームを誘発する言語資料の対に対応する。
フレームシフトを予測する機能により、アノテーションプロジェクションによる多言語FrameNetの自動生成が可能になる。
本稿では,フレームシフト予測タスクを提案し,グラフアテンションネットワークと補助訓練を組み合わせることで,相互言語的フレーム間対応を学習し,フレームシフトを予測できることを示す。
関連論文リスト
- Visual Representation Learning with Stochastic Frame Prediction [90.99577838303297]
本稿では,フレーム予測における不確実性を捉えることを学ぶ映像生成の考え方を再考する。
フレーム間の時間情報を学習するためのフレーム予測モデルを訓練するフレームワークを設計する。
このアーキテクチャは、両目的を相乗的かつ計算効率のよい方法で組み合わせることができる。
論文 参考訳(メタデータ) (2024-06-11T16:05:15Z) - TTVFI: Learning Trajectory-Aware Transformer for Video Frame
Interpolation [50.49396123016185]
ビデオフレーム(VFI)は、2つの連続するフレーム間の中間フレームを合成することを目的としている。
ビデオフレーム補間用トラジェクトリ対応トランス (TTVFI) を提案する。
提案手法は,4つの広く使用されているVFIベンチマークにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-19T03:37:49Z) - Optimizing Video Prediction via Video Frame Interpolation [53.16726447796844]
本稿では,映像フレームスケープのフォトリアリスティックな結果にインスパイアされた,映像フレームによる映像予測のための新しい最適化フレームワークを提案する。
我々のフレームワークは、トレーニングデータセットを必要とせずに、事前訓練された差別化可能なビデオフレームモジュールによる最適化に基づいている。
我々の手法は、大量のトレーニングデータや余分な意味情報を必要とする他のビデオ予測手法よりも優れている。
論文 参考訳(メタデータ) (2022-06-27T17:03:46Z) - A Double-Graph Based Framework for Frame Semantic Parsing [23.552054033442545]
フレーム意味解析は基本的なNLPタスクであり、フレーム識別、引数識別、ロール分類という3つのサブタスクから構成される。
これまでのほとんどの研究は、異なるサブタスクと議論の関係を無視し、オントロジ的なフレーム知識にはほとんど注意を払わない傾向にある。
本稿では、二重グラフ(KID)を用いた知識誘導型セマンティックPKを提案する。
実験の結果、KIDは2つのFrameNetデータセット上で1.7F1スコアで従来の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2022-06-18T09:39:38Z) - Lutma: a Frame-Making Tool for Collaborative FrameNet Development [0.9786690381850356]
本稿では,Global FrameNetイニシアチブにフレームと語彙単位をコントリビュートするためのコラボレーションツールであるLutmaを紹介する。
このツールは、言語とそれらによって符号化された文化的視点の両方の観点から、FrameNetのカバレッジを合理的に拡張することを可能にする、と我々は主張する。
論文 参考訳(メタデータ) (2022-05-24T07:04:43Z) - Sister Help: Data Augmentation for Frame-Semantic Role Labeling [9.62264668211579]
既存のフレーム固有のアノテーションを用いて、注釈のない同じフレームの他の語彙単位を自動的に注釈付けするデータ拡張手法を提案する。
本稿では,このデータ強化の重要性を示すフレーム・セマンティック・ロール・ラベリングの実験を行う。
論文 参考訳(メタデータ) (2021-09-16T05:15:29Z) - Learning Semantic-Aware Dynamics for Video Prediction [68.04359321855702]
非閉塞を明示的にモデル化して,映像フレームを予測するためのアーキテクチャとトレーニング方式を提案する。
シーンの外観は、コ・ヴィジュアブル領域の予測された動きを用いて過去のフレームから歪められる。
論文 参考訳(メタデータ) (2021-04-20T05:00:24Z) - Deep Sketch-guided Cartoon Video Inbetweening [24.00033622396297]
本研究では,ユーザスケッチに案内されたアニメーションの動きに追従しながら,2つの入力から色情報を取得することで,マンガ映像を生成するフレームワークを提案する。
フレームとスケッチの対応性を明示的に考慮することにより,他の画像合成法よりも高品質な結果が得られる。
論文 参考訳(メタデータ) (2020-08-10T14:22:04Z) - Image Morphing with Perceptual Constraints and STN Alignment [70.38273150435928]
本稿では,一対の入力画像で動作する条件付きGANモーフィングフレームワークを提案する。
特別なトレーニングプロトコルは、知覚的類似性損失と組み合わせてフレームのシーケンスを生成し、時間とともにスムーズな変換を促進する。
我々は、古典的かつ潜時的な空間変形技術との比較を行い、自己スーパービジョンのための一連の画像から、我々のネットワークが視覚的に楽しむモーフィング効果を生成することを実証する。
論文 参考訳(メタデータ) (2020-04-29T10:49:10Z) - SF-Net: Single-Frame Supervision for Temporal Action Localization [60.202516362976645]
単一フレームの監視は、低いアノテーションのオーバーヘッドを維持しながら、追加の時間的アクション信号を導入します。
本研究では,SF-Netと呼ばれる単一フレーム監視システムを提案する。
SF-Netは、セグメントローカライゼーションと単一フレームローカライゼーションの両方の観点から、最先端の弱い教師付き手法を大幅に改善する。
論文 参考訳(メタデータ) (2020-03-15T15:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。