Multiple photon antibunching-to-bunching transitions in the dissipative
anisotropic quantum Rabi model
- URL: http://arxiv.org/abs/2201.01917v1
- Date: Thu, 6 Jan 2022 04:33:41 GMT
- Title: Multiple photon antibunching-to-bunching transitions in the dissipative
anisotropic quantum Rabi model
- Authors: Tian Ye, Chen Wang, and Qing-Hu Chen
- Abstract summary: We investigate the two-photon correlation function in the dissipative anisotropic quantum Rabi model.
Multiple antibunching-to-bunching transitions are generally exhibited at the deep strong qubit-photon coupling.
- Score: 4.54325448000206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the two-photon correlation function in the dissipative
anisotropic quantum Rabi model in the framework of quantum dressed master
equation. Multiple antibunching-to-bunching transitions are generally exhibited
at the deep strong qubit-photon coupling. The emerged additional photon
antibunching feature is however lacking in the dissipative isotropic quantum
Rabi model. Importantly, the observed two-photon statistics can be well
described analytically within a few lowest eigenstates at low temperatures. It
is revealed that the additional photon antibunching effect is mainly originated
from the selection rule of the two-photon correlation measurement induced
eigenstate transitions and the enlarged energy gap of the first two eigenstates
after the level crossings. Moreover, we unravel the implication of the photon
bunching behavior with the first-order quantum phase transition. We hope these
results may fertilize the analysis of the nonclassical photon radiation in the
anisotropic qubit-photon hybrid systems.
Related papers
- Two-photon excitation with finite pulses unlocks pure dephasing-induced
degradation of entangled photons emitted by quantum dots [0.0]
Two-photon excitation limits the achievable degree of entanglement by introducing which-path information.
Two-photon excitation and longitudinal acoustic phonons on photon pairs emitted by strongly-confining quantum dots is investigated.
arXiv Detail & Related papers (2023-01-25T20:44:58Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Nonclassical correlated deterministic single-photon pairs for a trapped
atom in bimodal cavities [0.0]
Single photons and single-photon pairs, inherently nonclassical in their nature, are fundamental elements of quantum sciences and technologies.
We propose to realize the nonclassical correlated deterministic photon pairs at the single-photon level for a single atom trapped in bimodal cavities.
arXiv Detail & Related papers (2022-04-15T08:05:26Z) - Un-symmetric photon subtraction: a method for generating high photon
number states and their relevance to loss estimation at ultimate quantum
limit [0.0]
We have studied theoretical un-symmetric multi-photon subtracted twin beam state and demonstrated a method for generating states that resembles to high photon number states.
A crucial point is high non-classicality is obtained by photon subtraction when mean photons per mode of twin beam state is low.
arXiv Detail & Related papers (2021-10-03T23:28:47Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.