論文の概要: Contrastive Neighborhood Alignment
- arxiv url: http://arxiv.org/abs/2201.01922v1
- Date: Thu, 6 Jan 2022 04:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-07 20:14:02.148232
- Title: Contrastive Neighborhood Alignment
- Title(参考訳): コントラスト的近隣アライメント
- Authors: Pengkai Zhu, Zhaowei Cai, Yuanjun Xiong, Zhuowen Tu, Luis Goncalves,
Vijay Mahadevan, Stefano Soatto
- Abstract要約: 本稿では,学習特徴のトポロジを維持するための多様体学習手法であるContrastive Neighborhood Alignment(CNA)を提案する。
対象モデルは、対照的な損失を用いて、ソース表現空間の局所構造を模倣することを目的としている。
CNAは3つのシナリオで説明される: 多様体学習、モデルが元のデータの局所的なトポロジーを次元還元された空間で維持する、モデル蒸留、小さな学生モデルがより大きな教師を模倣するために訓練される、レガシーモデル更新、より強力なモデルに置き換えられる、という3つのシナリオである。
- 参考スコア(独自算出の注目度): 81.65103777329874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Contrastive Neighborhood Alignment (CNA), a manifold learning
approach to maintain the topology of learned features whereby data points that
are mapped to nearby representations by the source (teacher) model are also
mapped to neighbors by the target (student) model. The target model aims to
mimic the local structure of the source representation space using a
contrastive loss. CNA is an unsupervised learning algorithm that does not
require ground-truth labels for the individual samples. CNA is illustrated in
three scenarios: manifold learning, where the model maintains the local
topology of the original data in a dimension-reduced space; model distillation,
where a small student model is trained to mimic a larger teacher; and legacy
model update, where an older model is replaced by a more powerful one.
Experiments show that CNA is able to capture the manifold in a high-dimensional
space and improves performance compared to the competing methods in their
domains.
- Abstract(参考訳): 本稿では,学習特徴のトポロジーを維持するための多様体学習手法であるコントラスト的近傍アライメント(cna)について述べる。
対象モデルは、対照的な損失を用いて、ソース表現空間の局所構造を模倣することを目的としている。
CNAは教師なし学習アルゴリズムであり、個々のサンプルに対して基調ラベルを必要としない。
cnaは3つのシナリオで示される: モデルが次元が縮小された空間における元のデータの局所トポロジを維持する多様体学習、小さな学生モデルがより大きな教師を模倣するように訓練されるモデル蒸留、古いモデルをより強力なものに置き換えるレガシーモデル更新。
実験により、cnaは高次元空間で多様体を捉えることができ、領域内の競合する方法と比較して性能が向上することが示された。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning [22.14627083675405]
我々は、時間とともに新しいメッシュで拡張できるインクリメンタルニューラルネットワークモデルを提案する。
本研究では,Pascal3DおよびObjectNet3Dデータセットの広範な実験を通して,本手法の有効性を実証する。
我々の研究は、ポーズ推定のための最初の漸進的な学習手法も提示している。
論文 参考訳(メタデータ) (2024-07-12T13:57:49Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - Learning Robust Representation for Clustering through Locality
Preserving Variational Discriminative Network [16.259673823482665]
Variational Deep Embeddingは、さまざまなクラスタリングタスクで大きな成功を収めます。
VaDEは,1)入力ノイズに弱い,2)隣接するデータポイント間の局所性情報を無視する,という2つの問題に悩まされている。
強固な埋め込み判別器と局所構造制約によりvadeを改善する共同学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-25T02:31:55Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
この論文は、解釈可能で堅牢で透明なモデルに対する需要の増加に対応するために、従来の考え方に基づいている。
提案したEigen-CAMは、畳み込み層から学習した特徴/表現の基本的なコンポーネントを計算し、視覚化する。
論文 参考訳(メタデータ) (2020-08-01T17:14:13Z) - Local Model Feature Transformations [0.0]
局所学習法は機械学習アルゴリズムの一般的なクラスである。
局所学習モデルの研究は、主に単純なモデルファミリーに限られている。
局所モデリングパラダイムをガウス過程、二次モデル、単語埋め込みモデルに拡張する。
論文 参考訳(メタデータ) (2020-04-13T18:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。