論文の概要: Persistent Homology for Breast Tumor Classification using Mammogram
Scans
- arxiv url: http://arxiv.org/abs/2201.02295v1
- Date: Fri, 7 Jan 2022 02:03:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-10 20:46:36.022066
- Title: Persistent Homology for Breast Tumor Classification using Mammogram
Scans
- Title(参考訳): 乳腺腫瘍分類におけるマンモグラムを用いた持続的ホモロジー
- Authors: Aras Asaad, Dashti Ali, Taban Majeed, Rasber Rashid
- Abstract要約: 本研究では,ランドマーク選択法に基づく1つの画像の複数のPD表現を構築する。
パーシステンス・ランドスケープ, 永続画像, パーシステンス・ビンニング (Betti Curve) と統計を用いたPDベクター化を行った。
2つの乳腺異常検出データセットを用いたランドマークベースPHの有効性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An Important tool in the field topological data analysis is known as
persistent Homology (PH) which is used to encode abstract representation of the
homology of data at different resolutions in the form of persistence diagram
(PD). In this work we build more than one PD representation of a single image
based on a landmark selection method, known as local binary patterns, that
encode different types of local textures from images. We employed different PD
vectorizations using persistence landscapes, persistence images, persistence
binning (Betti Curve) and statistics. We tested the effectiveness of proposed
landmark based PH on two publicly available breast abnormality detection
datasets using mammogram scans. Sensitivity of landmark based PH obtained is
over 90% in both datasets for the detection of abnormal breast scans. Finally,
experimental results give new insights on using different types of PD
vectorizations which help in utilising PH in conjunction with machine learning
classifiers.
- Abstract(参考訳): フィールドトポロジカルデータ解析における重要なツールは永続ホモロジー (ph) と呼ばれ、永続性ダイアグラム (pd) という形で異なる解像度でデータのホモロジーの抽象表現を符号化するために用いられる。
本研究では,局所2値パターンとして知られるランドマーク選択法に基づいて,画像から異なる種類の局所テクスチャを符号化する単一の画像のpd表現を複数構築する。
我々は、パーシステンスランドスケープ、パーシステンスイメージ、パーシステンスバイナリ(ベティ曲線)、統計を用いて異なるpdベクトル化を採用した。
マンモグラフィースキャンによる乳房異常検出データセットを2つ公開し, 本法の有効性を検証した。
ランドマークベースphの感度は, 乳房異常スキャン検出のための両データセットの90%以上である。
最後に、実験の結果、異なるタイプのpdベクトル化の使用に関する新たな知見が得られ、機械学習の分類器と連携してphを活用するのに役立つ。
関連論文リスト
- FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks [44.54301473673582]
医用画像のランドマーク検出を高精度に行うための,最初の基礎モデル付きワンショットランドマーク検出(FM-OSD)フレームワークを提案する。
本手法は,単一のテンプレート画像のみを用いることで,最先端のワンショットランドマーク検出法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-07-07T15:37:02Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
細胞核疾患と病理タイルの空間的相関の2つの病因を考察した。
本研究では,抽出器訓練中の汚れ分離を利用したデータ拡張手法を提案する。
次に,隣接行列を用いてタイル間の空間的関係を記述する。
これら2つのビューを統合することで,H&E染色組織像を解析するためのマルチインスタンス・フレームワークを設計した。
論文 参考訳(メタデータ) (2023-07-12T16:14:23Z) - VesselMorph: Domain-Generalized Retinal Vessel Segmentation via
Shape-Aware Representation [12.194439938007672]
ドメインシフトは医療画像の本質的な特性であり、学習ベースのアルゴリズムを大規模に展開する上で大きな障害となっている。
形状認識表現を合成することにより2次元網膜血管セグメンテーションタスクを一般化するVesselMorphという手法を提案する。
VesselMorphは、異なるドメインシフトシナリオの競合するメソッドと比較して、優れた一般化性能を実現する。
論文 参考訳(メタデータ) (2023-07-01T06:02:22Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - CT Image Synthesis Using Weakly Supervised Segmentation and Geometric
Inter-Label Relations For COVID Image Analysis [4.898744396854313]
解剖学的ラベル間の関係を学習し,GANを用いた医用画像合成法の改良を提案する。
本手法から得られた合成画像を用いて,肺CT画像から新型コロナウイルス感染領域を抽出するネットワークを訓練する。
論文 参考訳(メタデータ) (2021-06-15T07:21:24Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。