論文の概要: A Cross Validation framework for Signal Denoising with Applications to
Trend Filtering, Dyadic CART and Beyond
- arxiv url: http://arxiv.org/abs/2201.02654v1
- Date: Fri, 7 Jan 2022 19:38:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-12 11:11:31.666857
- Title: A Cross Validation framework for Signal Denoising with Applications to
Trend Filtering, Dyadic CART and Beyond
- Title(参考訳): 信号デノナイズのためのクロスバリデーションフレームワークとそのトレンドフィルタリング, Dyadic CARTなどへの応用
- Authors: Anamitra Chaudhuri and Sabyasachi Chatterjee
- Abstract要約: 本稿では,信号復調のための一般的なクロスバリデーションの枠組みを定式化する。
その後、Trend FilteringやDyadic CARTのような非パラメトリック回帰手法に適用される。
得られたクロス検証されたバージョンは、最適に調整されたアナログで知られているように、ほぼ同じ収束率に達することが示される。
- 参考スコア(独自算出の注目度): 8.37609145576126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper formulates a general cross validation framework for signal
denoising. The general framework is then applied to nonparametric regression
methods such as Trend Filtering and Dyadic CART. The resulting cross validated
versions are then shown to attain nearly the same rates of convergence as are
known for the optimally tuned analogues. There did not exist any previous
theoretical analyses of cross validated versions of Trend Filtering or Dyadic
CART. To illustrate the generality of the framework we also propose and study
cross validated versions of two fundamental estimators; lasso for high
dimensional linear regression and singular value thresholding for matrix
estimation. Our general framework is inspired by the ideas in Chatterjee and
Jafarov (2015) and is potentially applicable to a wide range of estimation
methods which use tuning parameters.
- Abstract(参考訳): 本稿では,信号復調のための一般的なクロス検証フレームワークを定式化する。
一般的なフレームワークは、トレンドフィルタリングやdyadic cartのような非パラメトリック回帰法に適用される。
得られたクロス検証されたバージョンは、最適に調整されたアナログで知られているように、ほぼ同じ収束率に達することが示される。
トレンドフィルタリングやDyadic CARTのクロスバリデーションバージョンに関する以前の理論的分析は存在しなかった。
フレームワークの汎用性を説明するために, 2つの基本推定器の相互検証版, 高次元線形回帰のためのラッソ, 行列推定のための特異値閾値付けを提案する。
我々の一般的なフレームワークはChatterjee と Jafarov (2015) のアイデアにインスパイアされており、チューニングパラメータを使用する幅広い推定手法に適用できる可能性がある。
関連論文リスト
- Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
本稿では,Top-K Pairwise Ranking(TKPR)という新しい尺度を提案する。
一連の分析により、TKPRは既存のランキングベースの尺度と互換性があることが示されている。
一方,データ依存縮約法という新しい手法に基づいて,提案手法の急激な一般化を確立する。
論文 参考訳(メタデータ) (2024-07-09T09:36:37Z) - ROTI-GCV: Generalized Cross-Validation for right-ROTationally Invariant Data [1.194799054956877]
高次元正規化回帰における2つの重要なタスクは、正確な予測のために正規化強度を調整し、サンプル外リスクを推定することである。
問題のある条件下でクロスバリデーションを確実に行うための新しいフレームワーク ROTI-GCV を導入する。
論文 参考訳(メタデータ) (2024-06-17T15:50:00Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Online and Offline Robust Multivariate Linear Regression [0.3277163122167433]
提案手法は,オンライン勾配降下アルゴリズムと平均化バージョン,オフライン固定点アルゴリズムの2つである。
ノイズの分散行列は一般に未知であるため、マハラノビスに基づく勾配勾配アルゴリズムに頑健な推定をプラグインすることを提案する。
論文 参考訳(メタデータ) (2024-04-30T12:30:48Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
ソースドメインへのオーバーフィッティングは、ディープニューラルネットワークの勾配に基づくトレーニングにおいて一般的な問題である。
本稿では,ネットワークパラメータの勾配-信号-雑音比(GSNR)を選択することを提案する。
論文 参考訳(メタデータ) (2023-10-11T10:21:34Z) - Temporal-spatial model via Trend Filtering [12.875863572064986]
本研究は、時間と空間の同時依存性を持つデータを対象とした非パラメトリック回帰関数の推定に焦点をあてる。
トレンド・フィルタの研究で以前は知られていなかった一意の相転移現象が、我々の分析を通して現れる。
論文 参考訳(メタデータ) (2023-08-30T17:50:00Z) - Dynamic selection of p-norm in linear adaptive filtering via online
kernel-based reinforcement learning [8.319127681936815]
本研究は, 線形適応フィルタリングにおいて, 最適p-ノルムが外れ値と競合する問題に対して, 動的に選択する問題に対処する。
オンラインおよびデータ駆動型フレームワークはカーネルベース強化学習(KBRL)によって設計される
論文 参考訳(メタデータ) (2022-10-20T14:49:39Z) - Intersection of Parallels as an Early Stopping Criterion [64.8387564654474]
そこで本研究では,検証セットを必要とせずに,トレーニングイテレーションの早期停止点を見つける手法を提案する。
幅広い学習率において,コサイン距離基準 (CDC) と呼ばれる手法は,比較したすべての手法よりも平均的な一般化に寄与する。
論文 参考訳(メタデータ) (2022-08-19T19:42:41Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。