論文の概要: Development of Automatic Tree Counting Software from UAV Based Aerial
Images With Machine Learning
- arxiv url: http://arxiv.org/abs/2201.02698v1
- Date: Fri, 7 Jan 2022 22:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-11 16:08:10.407560
- Title: Development of Automatic Tree Counting Software from UAV Based Aerial
Images With Machine Learning
- Title(参考訳): 機械学習を用いたuavベース空中画像からの樹木自動計測ソフトウェアの開発
- Authors: Musa Ata\c{s}, Ayhan Talay
- Abstract要約: 本研究の目的は,UAVによる高解像度画像から,シルト大学キャンパスの指定領域の樹木を自動カウントすることである。
Adobe Photoshopのフォトマージツールを使って、高さ30mで20%オーバーラップした画像を地上局でオフラインで縫い付けました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicles (UAV) are used successfully in many application
areas such as military, security, monitoring, emergency aid, tourism,
agriculture, and forestry. This study aims to automatically count trees in
designated areas on the Siirt University campus from high-resolution images
obtained by UAV. Images obtained at 30 meters height with 20% overlap were
stitched offline at the ground station using Adobe Photoshop's photo merge
tool. The resulting image was denoised and smoothed by applying the 3x3 median
and mean filter, respectively. After generating the orthophoto map of the
aerial images captured by the UAV in certain regions, the bounding boxes of
different objects on these maps were labeled in the modalities of HSV (Hue
Saturation Value), RGB (Red Green Blue) and Gray. Training, validation, and
test datasets were generated and then have been evaluated for classification
success rates related to tree detection using various machine learning
algorithms. In the last step, a ground truth model was established by obtaining
the actual tree numbers, and then the prediction performance was calculated by
comparing the reference ground truth data with the proposed model. It is
considered that significant success has been achieved for tree count with an
average accuracy rate of 87% obtained using the MLP classifier in predetermined
regions.
- Abstract(参考訳): 無人航空機(UAV)は、軍事、警備、監視、緊急支援、観光、農業、林業など、多くの応用分野において成功している。
本研究の目的は,UAVによる高解像度画像から,シルト大学キャンパスの指定領域の樹木を自動カウントすることである。
Adobe Photoshopのフォトマージツールを使って、高さ30mで20%オーバーラップした画像を地上局でオフラインで縫い付けました。
その結果,3x3中央値フィルタと平均値フィルタをそれぞれ適用し,画像のノイズ化と平滑化を行った。
ある地域でUAVが捉えた空中画像の正光マップを生成した後、これらの地図上の異なる物体の境界ボックスは、HSV(Hue Saturation Value)、RGB(Red Green Blue)、グレー(Gray)のモダリティにラベル付けされた。
トレーニング,検証,テストデータセットが生成され,さまざまな機械学習アルゴリズムを用いて木検出に関する分類成功率の評価を行った。
最終段階では,実木数を求めることにより基底真理モデルが確立され,参照基底真理データと提案モデルとの比較により予測性能が算出された。
MLP分類器で得られた木数の平均精度は87%と推定された。
関連論文リスト
- Tree Species Classification using Machine Learning and 3D Tomographic SAR -- a case study in Northern Europe [0.0]
樹木種の分類は、自然保護、森林在庫、森林管理、絶滅危惧種の保護において重要な役割を担っている。
本研究では,SLC(Single-look Complex)画像のスタックを利用した3次元トモグラフィーデータセットであるTtomoSenseを用いた。
論文 参考訳(メタデータ) (2024-11-19T22:25:26Z) - OAM-TCD: A globally diverse dataset of high-resolution tree cover maps [8.336960607169175]
OpenMap (OAM) から得られた高解像度の空中画像において, ツリークラウンデライン化(TCD)のための新しいオープンアクセスデータセットを提案する。
我々のデータセットであるOAM-TCDは、50722048x2048px画像を10cm/px解像度で、関連する280k個以上の木と56k個の木からなる。
データセットを使用して、既存の最先端モデルと比較する参照インスタンスとセマンティックセグメンテーションモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-07-16T14:11:29Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
画像分岐のポテンシャルを2つの側面から解き放つことを目的として,新しい3Dオブジェクト検出器UPIDetを提案する。
まず、UPIDetは正規化された局所座標写像推定と呼ばれる新しい2次元補助タスクを導入する。
第2に,イメージブランチのトレーニング目標から逆転する勾配によって,ポイントクラウドバックボーンの表現能力を向上できることを見出した。
論文 参考訳(メタデータ) (2023-01-22T08:26:58Z) - Classification of Single Tree Decay Stages from Combined Airborne LiDAR
Data and CIR Imagery [1.4589991363650008]
この研究は、初めて、個々の木(ノルウェー・スプルース)を5つの崩壊段階に自動的に分類した。
3つの異なる機械学習手法 - 3Dポイントクラウドベースのディープラーニング(KPConv)、畳み込みニューラルネットワーク(CNN)、ランダムフォレスト(RF)。
KPConv、CNN、RFの合計精度は88.8%、88.4%、85.9%に達した。
論文 参考訳(メタデータ) (2023-01-04T22:20:16Z) - Transferring learned patterns from ground-based field imagery to predict
UAV-based imagery for crop and weed semantic segmentation in precision crop
farming [3.95486899327898]
雑草の区分けのために,UAVのフィールド画像と空中画像の両方を予測できる深層畳み込みネットワークを開発した。
ネットワーク学習プロセスは、浅い層と深い層のフィーチャーマップによって視覚化される。
この研究は、深層畳み込みニューラルネットワークが、フィールド画像と空中画像の両方から雑草を分類するために使用できることを示した。
論文 参考訳(メタデータ) (2022-10-20T19:25:06Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Satellite Image Based Cross-view Localization for Autonomous Vehicle [59.72040418584396]
本稿では,市販の高精細衛星画像を使用可能な地図として利用することにより,良好な精度でクロスビュー車両のローカライゼーションを実現することができることを示す。
本手法はKITTIとFord Multi-AVの季節データセットを地上ビューとして,Google Mapsを衛星ビューとして検証した。
論文 参考訳(メタデータ) (2022-07-27T13:16:39Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - Learning CNN filters from user-drawn image markers for coconut-tree
image classification [78.42152902652215]
本稿では,CNNの特徴抽出器を訓練するために,最小限のユーザ選択画像を必要とする手法を提案する。
本手法は,クラスを識別する画像領域のユーザ描画マーカーから,各畳み込み層のフィルタを学習する。
バックプロパゲーションに基づく最適化には依存せず、ココナッツツリー空中画像のバイナリ分類にその利点を実証する。
論文 参考訳(メタデータ) (2020-08-08T15:50:23Z) - Deep-Learning-based Automated Palm Tree Counting and Geolocation in
Large Farms from Aerial Geotagged Images [1.8782750537161614]
畳み込みニューラルネットワークを用いた空中画像からヤシの木の自動カウントと位置決めのためのフレームワークを提案する。
この目的のために、サウジアラビアのリヤドにあるハルジュ地区のヤシの木農場で、DJIドローンを用いて空中画像を収集した。
論文 参考訳(メタデータ) (2020-05-11T17:11:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。