論文の概要: PCTreeS: 3D Point Cloud Tree Species Classification Using Airborne LiDAR Images
- arxiv url: http://arxiv.org/abs/2412.04714v1
- Date: Fri, 06 Dec 2024 02:09:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:28.300129
- Title: PCTreeS: 3D Point Cloud Tree Species Classification Using Airborne LiDAR Images
- Title(参考訳): PCTreeS:空中LiDAR画像を用いた3Dポイントクラウドツリーの分類
- Authors: Hongjin Lin, Matthew Nazari, Derek Zheng,
- Abstract要約: 樹種の分布に関する現在の知識は、フィールドにおける手動データ収集に大きく依存している。
近年の研究では、光検出とランキング(LiDAR)画像を用いた最先端のディープラーニングモデルにより、様々な生態系における樹木種の正確かつスケーラブルな分類が可能であることが示されている。
本稿では,(1)熱帯サバンナの樹木分類にディープラーニングの枠組みを適用し,(2)地上のLiDAR画像よりも解像度が低いがスケーラビリティの高い空中LiDAR画像を用い,(3)視覚変換モデル(PCTree)に3D点雲画像を直接供給するアプローチを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reliable large-scale data on the state of forests is crucial for monitoring ecosystem health, carbon stock, and the impact of climate change. Current knowledge of tree species distribution relies heavily on manual data collection in the field, which often takes years to complete, resulting in limited datasets that cover only a small subset of the world's forests. Recent works show that state-of-the-art deep learning models using Light Detection and Ranging (LiDAR) images enable accurate and scalable classification of tree species in various ecosystems. While LiDAR images contain rich 3D information, most previous works flatten the 3D images into 2D projections to use Convolutional Neural Networks (CNNs). This paper offers three significant contributions: (1) we apply the deep learning framework for tree classification in tropical savannas; (2) we use Airborne LiDAR images, which have a lower resolution but greater scalability than Terrestrial LiDAR images used in most previous works; (3) we introduce the approach of directly feeding 3D point cloud images into a vision transformer model (PCTreeS). Our results show that the PCTreeS approach outperforms current CNN baselines with 2D projections in AUC (0.81), overall accuracy (0.72), and training time (~45 mins). This paper also motivates further LiDAR image collection and validation for accurate large-scale automatic classification of tree species.
- Abstract(参考訳): 森林の状態に関する信頼性の高い大規模データは、生態系の健康、炭素在庫、気候変動の影響を監視するために不可欠である。
樹種の分布に関する現在の知識は、フィールドにおける手動のデータ収集に大きく依存しており、多くの場合、完成までに何年もかかる。
近年の研究では、光検出とランキング(LiDAR)画像を用いた最先端のディープラーニングモデルにより、様々な生態系における樹木種の正確かつスケーラブルな分類が可能であることが示されている。
LiDAR画像にはリッチな3D情報が含まれているが、これまでの作業のほとんどは、畳み込みニューラルネットワーク(CNN)を使用するために3D画像を2Dプロジェクションにフラット化していた。
本稿では,(1)熱帯サバンナの樹木分類にディープラーニングの枠組みを適用し,(2)地上のLiDAR画像よりも解像度が低いがスケーラビリティの高い航空機用LiDAR画像を用い,(3)視覚変換モデル(PCTreeS)に3D点雲画像を直接供給するアプローチを導入する。
以上の結果から,PCTreeSアプローチは,AUC(0.81),総合精度(0.72),トレーニング時間(約45分)において,現在のCNNベースラインよりも優れていた。
また,本論文は,木種の大規模自動分類のためのLiDAR画像収集と検証も進めている。
関連論文リスト
- Tree Species Classification using Machine Learning and 3D Tomographic SAR -- a case study in Northern Europe [0.0]
樹木種の分類は、自然保護、森林在庫、森林管理、絶滅危惧種の保護において重要な役割を担っている。
本研究では,SLC(Single-look Complex)画像のスタックを利用した3次元トモグラフィーデータセットであるTtomoSenseを用いた。
論文 参考訳(メタデータ) (2024-11-19T22:25:26Z) - Benchmarking tree species classification from proximally-sensed laser scanning data: introducing the FOR-species20K dataset [1.2771525473423657]
FOR-species20Kベンチマークが作成され、33種から20,000以上の樹点雲が形成された。
このデータセットは、樹種分類のためのDLモデルのベンチマークを可能にする。
トップモデルであるDetailViewは特に堅牢で、データの不均衡をうまく処理し、ツリーサイズを効果的に一般化する。
論文 参考訳(メタデータ) (2024-08-12T21:47:15Z) - PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests [0.0]
木種分類用に設計された大規模でオープンなマルチモーダルデータセットであるPureForestデータセットを提案する。
樹種分類のための現在の一般のLidarデータセットは、ほとんどの場合、数十ヘクタールの注釈付きヘクタールの小さな領域にしか達しないため、多様性が低い。
対照的に、PureForestは18の樹種を13のセマンティッククラスに分類し、449の異なる単種林に339 km$2$で分布する。
論文 参考訳(メタデータ) (2024-04-18T10:23:10Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
本稿では,HVDistillと呼ばれるハイブリッドビューに基づく知識蒸留フレームワークを提案する。
提案手法は,スクラッチからトレーニングしたベースラインに対して一貫した改善を実現し,既存のスキームを大幅に上回っている。
論文 参考訳(メタデータ) (2024-03-18T14:18:08Z) - Tree Counting by Bridging 3D Point Clouds with Imagery [31.02816235514385]
2次元リモートセンシング画像は、主に高層キャノピーを示すが、密集したキャノピーを持つ地域では、個々の木の分化が容易ではない。
我々は,3次元LiDAR測定と2次元画像の融合を利用して,正確な木数計測を行う。
我々は,3次元空中LiDARデータと2次元画像を用いて,森林内の木を数える深層学習手法の比較を行った。
論文 参考訳(メタデータ) (2024-03-04T11:02:17Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Classification of Single Tree Decay Stages from Combined Airborne LiDAR
Data and CIR Imagery [1.4589991363650008]
この研究は、初めて、個々の木(ノルウェー・スプルース)を5つの崩壊段階に自動的に分類した。
3つの異なる機械学習手法 - 3Dポイントクラウドベースのディープラーニング(KPConv)、畳み込みニューラルネットワーク(CNN)、ランダムフォレスト(RF)。
KPConv、CNN、RFの合計精度は88.8%、88.4%、85.9%に達した。
論文 参考訳(メタデータ) (2023-01-04T22:20:16Z) - 3D Point Cloud Pre-training with Knowledge Distillation from 2D Images [128.40422211090078]
本稿では,2次元表現学習モデルから直接知識を取得するために,3次元ポイントクラウド事前学習モデルの知識蒸留手法を提案する。
具体的には、3Dポイントクラウドから概念特徴を抽出し、2D画像からの意味情報と比較するクロスアテンション機構を提案する。
このスキームでは,2次元教師モデルに含まれるリッチな情報から,クラウド事前学習モデルを直接学習する。
論文 参考訳(メタデータ) (2022-12-17T23:21:04Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Learning CNN filters from user-drawn image markers for coconut-tree
image classification [78.42152902652215]
本稿では,CNNの特徴抽出器を訓練するために,最小限のユーザ選択画像を必要とする手法を提案する。
本手法は,クラスを識別する画像領域のユーザ描画マーカーから,各畳み込み層のフィルタを学習する。
バックプロパゲーションに基づく最適化には依存せず、ココナッツツリー空中画像のバイナリ分類にその利点を実証する。
論文 参考訳(メタデータ) (2020-08-08T15:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。